Received 22 October 2016; revised 5 January 2017; accepted 16
March 2017
PLIŪPSNIO LAUKO ŽADINIMO,
INTENSYVIU LAZERIU ŠVITINANT MAGNETIZUOTĄ PLAZMĄ, MODELIS:
SINUSO PUSPERIODŽIO IR TRAPECINĖ IMPULSO FORMOS
References
/
Nuorodos
[1] T.Y. Chien, C.L.
Chang, C.H. Lee, J.Y. Lin, J. Wang, and S.Y. Chen, Spatially
localized self-injection of electrons in a self-modulated
laser-wakefield accelerator by using a laser-induced transient
density ramp, Phys. Rev. Lett.
94(11),
115003 (2005),
https://doi.org/10.1103/PhysRevLett.94.115003
[2] D. Close, C. Giuliano, R. Hellwarth, L. Hess, F. McClung,
and W. Wagner, 8A2 - The self-focusing of light of different
polarizations, IEEE J. Quantum Electron.
2(9), 553–557
(1966),
https://doi.org/10.1109/JQE.1966.1074077
[3] E. Esarey, P. Sprangle, J. Krall, and A. Ting, Overview of
plasma-based accelerator concepts, IEEE Trans. Plasma Sci.
24(2),
252–288 (1996),
https://doi.org/10.1109/27.509991
[4] H. Lin, Z. Xu, L.-M. Chen, and J.C. Kieffer, Laser wakefield
and self-modulation of driving pulse, Phys. Plasmas
10(8),
3371–3376 (2003),
https://doi.org/10.1063/1.1588639
[5] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E.
Lefebvre, J.P. Rousseau, F. Burgy, and V. Malka, A laser-plasma
accelerator producing monoenergetic electron beams, Nature
431
(7008), 541–544 (2004),
https://doi.org/10.1038/nature02963
[6] C.G.R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C.B.
Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W.P. Leemans,
High-quality electron beams from a laser wakefield accelerator
using plasma-channel guiding, Nature
431 (7008), 538–541
(2004),
https://doi.org/10.1038/nature02900
[7] S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas,
J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G.
Gallacher, C.J. Hooker, et al., Monoenergetic beams of
relativistic electrons from intense laser–plasma interactions,
Nature
431 (7008), 535–538 (2004),
https://doi.org/10.1038/nature02939
[8] T. Tajima and J.M. Dawson, Laser electron accelerator, Phys.
Rev. Lett.
43(4), 267–270 (1979),
https://doi.org/10.1103/PhysRevLett.43.267
[9] J.B. Rosenzweig, D.B. Cline, B. Cole, H. Figueroa, W. Gai,
R. Konecny, J. Norem, P. Schoessow, and J. Simpson, Experimental
observation of plasma wake-field acceleration, Phys. Rev. Lett.
61(1), 98–101 (1988),
https://doi.org/10.1103/PhysRevLett.61.98
[10] C.E. Clayton, M.J. Everett, A. Lal, D. Gordon, K.A. Marsh,
and C. Joshi, Acceleration and scattering of injected electrons
in plasma beat wave accelerator experiments, Phys. Plasmas
1(5),
1753–1760 (1994),
https://doi.org/10.1063/1.870679
[11] M. Everett, A. Lal, D. Gordon, C.E. Clayton, K.A. Marsh,
and C. Joshi, Trapped electron acceleration by a laser-driven
relativistic plasma wave, Nature
368 (6471), 527–529
(1994),
https://doi.org/10.1038/368527a0
[12] Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K.
Matsuo, K. Mima, K. Nishihara, H. Azechi, K.A. Tanaka, H.
Takabe, and S. Nakai, Beat-wave excitation of plasma wave and
observation of accelerated electrons, Phys. Rev. Lett.
68(1),
48–51 (1992),
https://doi.org/10.1103/PhysRevLett.68.48
[13] L.M. Gorbunov, N.E. Andreev, V.I. Kirsanov, A.A. Pogosova,
and R.R. Ramazashvili, Resonant excitation of wakefields by a
laser pulse in a plasma, JETP Lett.
55(10), 571–576
(1992),
[PDF]
[14] T.M. Antonsen and P. Mora, Self-focusing and Raman
scattering of laser pulses in tenuous plasmas, Phys. Rev. Lett.
69(15), 2204–2207 (1992),
https://doi.org/10.1103/PhysRevLett.69.2204
[15] E. Esarey, J. Krall, and P. Sprangle, Envelope analysis of
intense laser pulse self-modulation in plasmas, Phys. Rev. Lett.
72(18), 2887–2890 (1994),
https://doi.org/10.1103/PhysRevLett.72.2887
[16] K. Nakajima, Plasma-wave resonator for particle-beam
acceleration, Phys. Rev. A
45(2), 1149–1156 (1992),
https://doi.org/10.1103/PhysRevA.45.1149
[17] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec,
and V. Malka, Controlled injection and acceleration of electrons
in plasma wakefields by colliding laser pulses, Nature
444
(7120), 737–739 (2006),
https://doi.org/10.1038/nature05393
[18] W.P. Leemans, B. Nagler, A.J. Gonsalves, Cs. Toth, K.
Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, and S.M.
Hooker, GeV electron beams from a centimetre-scale accelerator,
Nat. Phys.
2(10), 696–699 (2006),
https://doi.org/10.1038/nphys418
[19] R. Wagner, S.Y. Chen, A. Maksimchuk, and D. Umstadter,
Electron acceleration by a laser wakefield in a relativistically
self-guided channel, Phys. Rev. Lett.
78(16), 3125–3128
(1997),
https://doi.org/10.1103/PhysRevLett.78.3125
[20] B. Yan, N.A. Schultz, A.L. Efros, and P.C. Taylor,
Universal distribution of residual carriers in tetrahedrally
coordinated amorphous semiconductors, Phys. Rev. Lett.
84(18),
4180–4183 (2000),
https://doi.org/10.1103/PhysRevLett.84.4180
[21] M. Borghesi, A.J. MacKinnon, A.R. Bell, R. Gaillard, and O.
Willi, Megagauss magnetic field generation and plasma jet
formation on solid targets irradiated by an ultraintense
picosecond laser pulse, Phys. Rev. Lett.
81(1), 112–115
(1998),
https://doi.org/10.1103/PhysRevLett.81.112
[22] R.N. Sudan, Mechanism for the generation of 109 G magnetic
fields in the interaction of ultraintense short laser pulse with
an overdense plasma target, Phys. Rev. Lett.
70(20),
3075–3078 (1993),
https://doi.org/10.1103/PhysRevLett.70.3075
[23] A. Lagutin, K. Rosseel, F. Herlach, J. Vanacken, and Y.
Bruynseraede, Development of reliable 70 T pulsed magnets, Meas.
Sci. Technol.
14(12), 2144 (2003),
https://doi.org/10.1088/0957-0233/14/12/015
[24] P.K. Shukla, G. Brodin, M. Marklund, and L. Stenflo, Wake
field generation and nonlinear evolution in a magnetized
electron-positron-ion plasma, Phys. Plasmas
15(8),
082305 (2008),
https://doi.org/10.1063/1.2970098
[25] H. Xiong, S. Liu, J. Liao, and X. Liu, Self-focusing of
laser pulse propagating in magnetized plasma, Optik
121(18),
1680–1683 (2010),
https://doi.org/10.1016/j.ijleo.2009.03.019
[26] V.B. Krasovitskii, V.G. Dorofeenko, V.I. Sotnikov, and B.S.
Bauer, Interaction of powerful laser pulse with magnetized
plasma, Phys. Plasmas
11(2), 724–742 (2004),
https://doi.org/10.1063/1.1633556
[27] P. Jha, R.K. Mishra, A.K. Upadhyay, and G. Raj, Spot-size
evolution of laser beam propagating in plasma embedded in axial
magnetic field, Phys. Plasmas
14(11), 114504 (2007),
https://doi.org/10.1063/1.2815789
[28] C.K. Birdsall and A.B. Langdon,
Plasma Physics via
Computer Simulation (McGraw-Hill, 1985),
http://books.google.com/books?id=7TMbAQAAIAAJ
[29] H.C. Wu,
JPIC & How to Make a PIC Code (Cornell
University Library, 2011),
http://arxiv.org/abs/1104.3163
[30] E. Esarey and C.B. Schroeder, Physics of laser-driven
plasma-based acceleration [electronic resource] (2003),
http://oskicat.berkeley.edu/record=b20937049~S1
[31] C. Huang, V.K. Decyk, C. Ren, M. Zhou, W. Lu, W.B. Mori,
J.H. Cooley, T.M. Antonsen Jr., and T. Katsouleas, QUICKPIC: A
highly efficient particle-in-cell code for modeling wakefield
acceleration in plasmas, J. Comput. Phys.
217(2),
658–679 (2006),
https://doi.org/10.1016/j.jcp.2006.01.039
[32] K. Yee, Numerical solution of initial boundary value
problems involving Maxwell’s equations in isotropic media, IEEE
Trans. Antennas Propag.
14, 302–307 (1966),
https://doi.org/10.1109/TAP.1966.1138693
[33] J.P. Boris, Relativistic plasma simulation-optimization of
a hybrid code, in:
Proceedings of Fourth Conference on
Numerical Simulations of Plasmas (Naval Research
Laboratory, Washington, D. C., 1970) pp. 3–67,
[PDF]
[34] H.R. Askari and A. Shahidani, Influence of properties of
the Gaussian laser pulse and magnetic field on the electron
acceleration in laser–plasma interactions, Opt. Laser Technol.
45,
613–619 (2013),
https://doi.org/10.1016/j.optlastec.2012.05.023