[PDF]    https://doi.org/10.3952/physics.v57i2.3512

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 55–65 (2017)


SIMULATION STUDY OF WAKE FIELD EXCITATION IN INTERACTION OF INTENSE LASER AND MAGNETIZED PLASMA: HALF-SINE PULSE SHAPE (HSPS) AND TRAPEZOID PULSE SHAPE (TPS)
Amir Rahimian and Hossien Zahed
Department of Physics, Sahand University of Technology, P. O. Box 51335-1996, Tabriz, Iran
a_rahimian@sut.ac.ir

Received 22 October 2016; revised 5 January 2017; accepted 16 March 2017

We have conducted particle-in-cell (PIC) simulations of a linearly polarized intensive laser pulse with two different envelopes propagating through a homogeneous fully ionized cold plasma. It is shown that the amplitude of the wake field depends on laser wavelength, pulse duration, electron number density and envelope shape. We have also simulated the effect of applying a longitudinal magnetic field on the wake field excitation process. It is observed that magnetic field enhances the wake field and increases its intensity in all cases. Our results are in agreement with the analytical results presented by Askari and Shahidani [Opt. Laser Technol. 45, 613–619 (2013)] and can help choosing the optimum values of affecting laser and plasma parameters in order to reach high accelerating wake electric fields.
Keywords: laser pulse, wake field excitation, particle-in-cell (PIC), magnetized plasma
PACS: 02.60.Cb, 52.25.Xz, 52,38.-r

PLIŪPSNIO LAUKO ŽADINIMO, INTENSYVIU LAZERIU ŠVITINANT MAGNETIZUOTĄ PLAZMĄ, MODELIS: SINUSO PUSPERIODŽIO IR TRAPECINĖ IMPULSO FORMOS

Amir Rahimian, Hossien Zahed
Sahand technologijos universitetas, Tabrizas, Iranas


References / Nuorodos

[1] T.Y. Chien, C.L. Chang, C.H. Lee, J.Y. Lin, J. Wang, and S.Y. Chen, Spatially localized self-injection of electrons in a self-modulated laser-wakefield accelerator by using a laser-induced transient density ramp, Phys. Rev. Lett. 94(11),
115003 (2005),
https://doi.org/10.1103/PhysRevLett.94.115003
[2] D. Close, C. Giuliano, R. Hellwarth, L. Hess, F. McClung, and W. Wagner, 8A2 - The self-focusing of light of different polarizations, IEEE J. Quantum Electron. 2(9), 553–557 (1966),
https://doi.org/10.1109/JQE.1966.1074077
[3] E. Esarey, P. Sprangle, J. Krall, and A. Ting, Overview of plasma-based accelerator concepts, IEEE Trans. Plasma Sci. 24(2), 252–288 (1996),
https://doi.org/10.1109/27.509991
[4] H. Lin, Z. Xu, L.-M. Chen, and J.C. Kieffer, Laser wakefield and self-modulation of driving pulse, Phys. Plasmas 10(8), 3371–3376 (2003),
https://doi.org/10.1063/1.1588639
[5] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, and V. Malka, A laser-plasma accelerator producing monoenergetic electron beams, Nature 431 (7008), 541–544 (2004),
https://doi.org/10.1038/nature02963
[6] C.G.R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nature 431 (7008), 538–541 (2004),
https://doi.org/10.1038/nature02900
[7] S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, et al., Monoenergetic beams of relativistic electrons from intense laser–plasma interactions, Nature 431 (7008), 535–538 (2004),
https://doi.org/10.1038/nature02939
[8] T. Tajima and J.M. Dawson, Laser electron accelerator, Phys. Rev. Lett. 43(4), 267–270 (1979),
https://doi.org/10.1103/PhysRevLett.43.267
[9] J.B. Rosenzweig, D.B. Cline, B. Cole, H. Figueroa, W. Gai, R. Konecny, J. Norem, P. Schoessow, and J. Simpson, Experimental observation of plasma wake-field acceleration, Phys. Rev. Lett. 61(1), 98–101 (1988),
https://doi.org/10.1103/PhysRevLett.61.98
[10] C.E. Clayton, M.J. Everett, A. Lal, D. Gordon, K.A. Marsh, and C. Joshi, Acceleration and scattering of injected electrons in plasma beat wave accelerator experiments, Phys. Plasmas 1(5), 1753–1760 (1994),
https://doi.org/10.1063/1.870679
[11] M. Everett, A. Lal, D. Gordon, C.E. Clayton, K.A. Marsh, and C. Joshi, Trapped electron acceleration by a laser-driven relativistic plasma wave, Nature 368 (6471), 527–529 (1994),
https://doi.org/10.1038/368527a0
[12] Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K. Matsuo, K. Mima, K. Nishihara, H. Azechi, K.A. Tanaka, H. Takabe, and S. Nakai, Beat-wave excitation of plasma wave and observation of accelerated electrons, Phys. Rev. Lett. 68(1), 48–51 (1992),
https://doi.org/10.1103/PhysRevLett.68.48
[13] L.M. Gorbunov, N.E. Andreev, V.I. Kirsanov, A.A. Pogosova, and R.R. Ramazashvili, Resonant excitation of wakefields by a laser pulse in a plasma, JETP Lett. 55(10), 571–576 (1992),
[PDF]
[14] T.M. Antonsen and P. Mora, Self-focusing and Raman scattering of laser pulses in tenuous plasmas, Phys. Rev. Lett. 69(15), 2204–2207 (1992),
https://doi.org/10.1103/PhysRevLett.69.2204
[15] E. Esarey, J. Krall, and P. Sprangle, Envelope analysis of intense laser pulse self-modulation in plasmas, Phys. Rev. Lett. 72(18), 2887–2890 (1994),
https://doi.org/10.1103/PhysRevLett.72.2887
[16] K. Nakajima, Plasma-wave resonator for particle-beam acceleration, Phys. Rev. A 45(2), 1149–1156 (1992), https://doi.org/10.1103/PhysRevA.45.1149
[17] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses, Nature 444 (7120), 737–739 (2006),
https://doi.org/10.1038/nature05393
[18] W.P. Leemans, B. Nagler, A.J. Gonsalves, Cs. Toth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, and S.M. Hooker, GeV electron beams from a centimetre-scale accelerator, Nat. Phys. 2(10), 696–699 (2006),
https://doi.org/10.1038/nphys418
[19] R. Wagner, S.Y. Chen, A. Maksimchuk, and D. Umstadter, Electron acceleration by a laser wakefield in a relativistically self-guided channel, Phys. Rev. Lett. 78(16), 3125–3128 (1997),
https://doi.org/10.1103/PhysRevLett.78.3125
[20] B. Yan, N.A. Schultz, A.L. Efros, and P.C. Taylor, Universal distribution of residual carriers in tetrahedrally coordinated amorphous semiconductors, Phys. Rev. Lett. 84(18), 4180–4183 (2000),
https://doi.org/10.1103/PhysRevLett.84.4180
[21] M. Borghesi, A.J. MacKinnon, A.R. Bell, R. Gaillard, and O. Willi, Megagauss magnetic field generation and plasma jet formation on solid targets irradiated by an ultraintense picosecond laser pulse, Phys. Rev. Lett. 81(1), 112–115 (1998),
https://doi.org/10.1103/PhysRevLett.81.112
[22] R.N. Sudan, Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target, Phys. Rev. Lett. 70(20), 3075–3078 (1993),
https://doi.org/10.1103/PhysRevLett.70.3075
[23] A. Lagutin, K. Rosseel, F. Herlach, J. Vanacken, and Y. Bruynseraede, Development of reliable 70 T pulsed magnets, Meas. Sci. Technol. 14(12), 2144 (2003),
https://doi.org/10.1088/0957-0233/14/12/015
[24] P.K. Shukla, G. Brodin, M. Marklund, and L. Stenflo, Wake field generation and nonlinear evolution in a magnetized electron-positron-ion plasma, Phys. Plasmas 15(8), 082305 (2008),
https://doi.org/10.1063/1.2970098
[25] H. Xiong, S. Liu, J. Liao, and X. Liu, Self-focusing of laser pulse propagating in magnetized plasma, Optik 121(18), 1680–1683 (2010),
https://doi.org/10.1016/j.ijleo.2009.03.019
[26] V.B. Krasovitskii, V.G. Dorofeenko, V.I. Sotnikov, and B.S. Bauer, Interaction of powerful laser pulse with magnetized plasma, Phys. Plasmas 11(2), 724–742 (2004),
https://doi.org/10.1063/1.1633556
[27] P. Jha, R.K. Mishra, A.K. Upadhyay, and G. Raj, Spot-size evolution of laser beam propagating in plasma embedded in axial magnetic field, Phys. Plasmas 14(11), 114504 (2007),
https://doi.org/10.1063/1.2815789
[28] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, 1985), http://books.google.com/books?id=7TMbAQAAIAAJ
[29] H.C. Wu, JPIC & How to Make a PIC Code (Cornell University Library, 2011),
http://arxiv.org/abs/1104.3163
[30] E. Esarey and C.B. Schroeder, Physics of laser-driven plasma-based acceleration [electronic resource] (2003),
http://oskicat.berkeley.edu/record=b20937049~S1
[31] C. Huang, V.K. Decyk, C. Ren, M. Zhou, W. Lu, W.B. Mori, J.H. Cooley, T.M. Antonsen Jr., and T. Katsouleas, QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas, J. Comput. Phys. 217(2), 658–679 (2006),
https://doi.org/10.1016/j.jcp.2006.01.039
[32] K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag. 14, 302–307 (1966),
https://doi.org/10.1109/TAP.1966.1138693
[33] J.P. Boris, Relativistic plasma simulation-optimization of a hybrid code, in: Proceedings of Fourth Conference on Numerical Simulations of Plasmas (Naval Research Laboratory, Washington, D. C., 1970) pp. 3–67,
[PDF]
[34] H.R. Askari and A. Shahidani, Influence of properties of the Gaussian laser pulse and magnetic field on the electron acceleration in laser–plasma interactions, Opt. Laser Technol. 45, 613–619 (2013),
https://doi.org/10.1016/j.optlastec.2012.05.023