Received 21 December 2016; revised 23 February 2017; accepted 16
March 2017
NAUJOS HARMONINIO OSCILIATORIAUS
BAZĖS TAIKYMO GALIMYBĖS, SKAIČIUOJANT KULONINĖS TRIJŲ
NETAPATINGŲ DALELIŲ SISTEMOS PAGRINDINĖS BŪSENOS ENERGIJĄ
Pasiūlytas naujas harmoninio osciliatoriaus
(HO) bazės taikymo metodas skaičiuojant kuloninės trijų
netapatingų dalelių sistemos nereliatyvistinę pagrindinės
būsenos energiją. Skirtingai nei tradiciniuose HO bazės
taikymuose, naudojančiuose tik vieną variacinį osciliatorinį
parametrą, įvesti skirtingi variaciniai parametrai kiekvienai
vidinei Jakobi koordinatei. Pateikto metodo veiksmingumas
pademonstruotas apskaičiuojant eilės trijų netapatingų dalelių
sistemų pagrindinių būsenų energijas iki 28 HO sužadinimo kvantų
skaičiaus. Rezultatai palyginami su įvertinimais, gautais
naudojant tradicinę HO bazę, ir kitų autorių duomenimis. Matome
žymų siūlomo metodo privalumą, palyginti su tradicinio HO bazės
taikymo galimybėmis, skaičiuojant kuloninių trijų netapatingų
dalelių sistemų nereliatyvistines pagrindinių būsenų energijas.
References
/
Nuorodos
[1] L.D. Faddeev,
Scattering theory for a three-particle system, Sov. Phys. JETP
12,
1014–1019 (1961)
[2] O.A. Yakubovsky, On the integral equations in the theory of
N particle scattering, Sov. J. Nucl. Phys.
5, 937–951
(1967)
[3] G.P. Kamuntavičius, Simple functional-differential equations
for the bound-state wave-function components, Few-Body Syst.
1,
91–109 (1986),
https://doi.org/10.1007/BF01277077
[4] J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R.
Schiavilla, K.E. Schmidt, and R.B. Wiringa, Quantum Monte Carlo
methods for nuclear physics, Rev. Mod. Phys.
87,
1067–1118 (2015),
http://doi.org/10.1103/RevModPhys.87.1067
[5] G.P. Kamuntavičius, The reduced Hamiltonian method in the
identical particle systems bound states theory, Sov. J. Part.
Nuclei
20, 109–122 (1989)
[6] A. Deveikis and G.P. Kamuntavičius, Elimination of spurious
states of oscillator shell model, Lith. J. Phys.
37,
371–383 (1997)
[7] P. Navrátil, G.P. Kamuntavičius, and B.R. Barrett,
Few-nucleon systems in a translationally invariant harmonic
oscillator basis, Phys. Rev. C
61, 044001 (2000),
https://doi.org/10.1103/PhysRevC.61.044001
[8] A. Bernotas and V. Šimonis, Magnetic moments of heavy
baryons in the bag model reexamined, Lith. J. Phys.
53,
84–98 (2013),
https://doi.org/10.3952/lithjphys.53202
[9] B.R. Barrett, P. Navrátil, and J.P. Vary,
Ab initio
no core shell model, Prog. Part. Nucl. Phys.
69, 131–181
(2013),
https://doi.org/10.1016/j.ppnp.2012.10.003
[10] J. Franklin, D.B. Lichtenberg, W. Namgung, and D. Carydas,
Wave-function mixing of flavor-degenerate baryons, Phys. Rev. D
24, 2910 (1981),
https://doi.org/10.1103/PhysRevD.24.2910
[11] J.M. Richard, The nonrelativistic three-body problem for
baryons, Phys. Rep.
212, 1–76 (1992),
https://doi.org/10.1016/0370-1573(92)90078-E
[12] G.P. Kamuntavičius, Galilei invariant technique for quantum
system description, J. Math. Phys.
55, 042103 (2014),
https://doi.org/10.1063/1.4870617
[13] A. Deveikis, Problems with translational invariance of
three-particle systems, J. Mod. Phys.
7, 290–303 (2016),
https://doi.org/10.4236/jmp.2016.73029
[14] D.V. Balin, V.A. Ganzha, S.M. Kozlov, E.M. Maev, G.E.
Petrov, M.A. Soroka, G.N. Schapkin, G.G. Semenchuk, V.A.
Trofimov, A.A. Vasiliev, et al., High precision study of muon
catalyzed fusion in D
2 and HD gas, Phys. Part. Nucl.
42, 185–214 (2011),
https://doi.org/10.1134/S106377961102002X
[15] J.-P. Karr and L. Hilico, Why three-body physics does not
solve the proton-radius puzzle, Phys. Rev. Lett.
109,
103401 (2012),
https://doi.org/10.1103/PhysRevLett.109.103401
[16] A.W. King, F. Longford, and H. Cox, The stability of
S-states of unit-charge Coulomb three-body systems: From H
–
to H
2+, J. Chem. Phys.
139, 224306
(2013),
https://doi.org/10.1063/1.4834036
[17] A.W. King, P.E. Herlihy, and H. Cox, Predicting the
stability of atom-like and molecule-like unit-charge Coulomb
three-particle systems, J. Chem. Phys.
141, 044120
(2014),
https://doi.org/10.1063/1.4890658
[18] L.U. Ancarani, K.V. Rodriguez, and G. Gasaneo, Ground and
excited states for exotic three-body atomic systems, EPJ Web
Conf.
3, 02009 (2010),
https://doi.org/10.1051/epjconf/20100302009
[19] C. Schwartz, Experiment and theory in computations of the
He atom ground state, Int. J. Mod. Phys. E
15, 877–888
(2006),
https://doi.org/10.1142/S0218301306004648
[20] S. Edvardsson, K. Karlsson, and H. Olin, corr3p_tr: A
particle approach for the general three-body problem, Comput.
Phys. Commun.
200, 259–273 (2016),
https://doi.org/10.1016/j.cpc.2015.10.022
[21] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii,
Quantum
Theory of Angular Momentum (World Scientific, Singapore,
1988),
https://doi.org/10.1142/0270
[22] G.P. Kamuntavičius, R.K. Kalinauskas, B.R. Barrett, S.
Mickevičius, and D. Germanas, The general harmonic-oscillator
brackets: compact expression, symmetries, sums and Fortran code,
Nucl. Phys. A
695, 191–201 (2001),
https://doi.org/10.1016/S0375-9474(01)01101-0
[23] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.
Flannery,
Numerical Recipes: The Art of Scientific Computing,
3rd. ed. (Cambridge University Press, 2007)
[24] P.J. Mohr, D.B. Newell, and B.N. Taylor, CODATA recommended
values of the fundamental physical constants, Rev. Mod. Phys.
88,
035009 (2014),
https://arxiv.org/abs/1507.07956v1,
https://doi.org/10.1103/RevModPhys.88.035009
[25] E.Z. Liverts and N. Barnea, Three-body systems with Coulomb
interaction. Bound and quasi-bound
S-states, Comput.
Phys. Commun.
184, 2596–2603 (2013),
https://doi.org/10.1016/j.cpc.2013.06.013
[26] A.M. Frolov, Structures and properties of the ground states
in H
2+-like adiabatic ions, J. Phys. B
35,
L331 (2002),
https://doi.org/10.1088/0953-4075/35/14/103
[27] A.M. Frolov and A.J. Thakkar, Weakly bound ground states in
three-body Coulomb systems with unit charges, Phys. Rev. A
46,
4418 (1992),
https://doi.org/10.1103/PhysRevA.46.4418
[28] A.M. Frolov and D.M. Wardlaw, Bound state spectra of
three-body muonic molecular ions, Eur. Phys. J. D
63,
339–350 (2011),
https://doi.org/10.1140/epjd/e2011-20142-0
[29] S. Kilic, J.P. Karr, and L. Hilico, Coulombic and radiative
decay rates of the resonances of the exotic molecular ions
ppμ,
ppπ,
ddμ,
ddπ, and
dtμ, Phys.
Rev. A
70, 042506 (2004),
https://doi.org/10.1103/PhysRevA.70.042506
[30] M. Moshinsky,
The Harmonic Oscillator in Modern
Physics: From Atoms to Quarks (Gordon and Breach, New
York, 1969)
[31] C.D. Lin, Hyperspherical coordinate approach to atomic and
Coulombic three-body systems, Phys. Rep.
257, 1–83
(1995),
https://doi.org/10.1016/0370-1573(94)00094-J
[32] E.A.G. Armour, J.M. Richard, and K. Varga, Stability of
few-charge systems in quantum mechanics, Phys. Rep.
413,
1–90 (2005),
https://doi.org/10.1016/j.physrep.2005.02.003