[PDF]    https://doi.org/10.3952/physics.v57i2.3514

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 78–87 (2017)


THE CRYSTALLINE STRUCTURE OF SrRuO3: APPLICATION OF HYBRID SCHEME TO THE DENSITY FUNCTIONALS REVISED FOR SOLIDS
Šarūnas Masys and Valdas Jonauskas
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
E-mail: sarunas.masys@tfai.vu.lt

Received 23 December 2016; accepted 16 March 2017

The crystalline structure of ground-state orthorhombic SrRuO3 is reproduced by applying the hybrid density functional theory scheme to the functionals based on the revised generalized-gradient approximations for solid-state calculations. The amount of Hartree–Fock (HF) exchange energy is varied in the range of 5–20% in order to systematically ascertain the optimum value of HF mixing which in turn ensures the best correspondence to the experimental measurements. Such investigation allows one to expand the set of tools that could be used for the efficient theoretical modelling of, for example, only recently stabilized phases of SrRuO3, helping to resolve issues emerging for the experimentalists.
Keywords: Perovskite crystals, density functional theory, crystalline structure
PACS: 71.15.Mb, 71.15.Nc, 61.50.-f

KRISTALINĖ SrRuO3 SANDARA: HIBRIDINIO METODO TAIKYMAS KIETŲJŲ KŪNŲ TANKIO FUNKCIONALAMS

Šarūnas Masys, Valdas Jonauskas
Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

SrRuO3 – perovskitinis kristalas, vertinamas dėl savo laidumo ir feromagnetinių savybių, taip pat labai gero struktūrinio suderinamumo su įvairiais funkciniais oksidais, naudojamais auginant perspektyvias heterosandūras ir supergardeles. Įprastinėmis sąlygomis SrRuO3 pasižymi ortorombine kristaline sandara, tačiau visai neseniai tyrėjams pavyko stabilizuoti tetragonines bei monoklinines šios medžiagos fazes, kurioms dar reikia išsamesnių tyrimų. Norint atkartoti ir išanalizuoti pasiektus rezultatus teoriniu lygmeniu, būtina identifikuoti patikimas teorines priemones, užtikrinančias kuo didesnį tikslumą. Todėl šiame darbe taikome hibridinį tankio funkcionalo teorijos metodą kietųjų kūnų tyrimams, pritaikytiems apibendrintiesiems gradientiniams artiniams, bandydami sistemiškai nustatyti optimalią Hartrio ir Foko (HF) pakaitinės energijos dalį, leidžiančią tiksliausiai atkurti ortorombinės SrRuO3 fazės kristalinę sandarą. Nustačius optimaliausią HF pakaitinės energijos indėlį, galima tikėtis, kad tokia HF ir tankio funkcionalų kombinacija bus veiksminga ir kitų dar netyrinėtų SrRuO3 fazių atžvilgiu, todėl ją bus galima rekomenduoti ateities tyrimams. Taip pat pateikiame konkretų taikymo pavyzdį, kai geometrijos optimizacija, atlikta plonųjų SrRuO3 plėvelių sistemai, leidžia tiksliai identifikuoti jos erdvinę grupę.

References / Nuorodos

[1] B.J. Kennedy and B.A. Hunter, High-temperature phases of SrRuO3, Phys. Rev. B 58, 653 (1998),
https://doi.org/10.1103/PhysRevB.58.653
[2] G. Koster, L. Klein, W. Siemons, G. Rijnders, J.S. Dodge, C.-B. Eom, D.H.A. Blank, and M.R. Beasley, Structure, physical properties, and applications of SrRuO3 thin films, Rev. Mod. Phys. 84, 253 (2012),
https://doi.org/10.1103/RevModPhys.84.253
[3] K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, et al., Reproducibility in density functional theory calculations of solids, Science 351, aad3000 (2016),
https://doi.org/10.1126/science.aad3000
[4] Š. Masys and V. Jonauskas, On the crystalline structure of orthorhombic SrRuO3: A benchmark study of DFT functionals, Comput. Mater. Sci. 124, 78 (2016),
https://doi.org/10.1016/j.commatsci.2016.07.019
[5] A. Vailionis, H. Boschker, W. Siemons, E.P. Houwman, D.H.A. Blank, G. Rijnders, and G. Koster, Misfit strain accommodation in epitaxial ABO3 perovskites: Lattice rotations and lattice modulations, Phys. Rev. B 83, 064101 (2011),
https://doi.org/10.1103/PhysRevB.83.064101
[6] D.I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Íñiguez, and P. Ghosez, Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides, Phys. Rev. B 77, 165107 (2008),
https://doi.org/10.1103/PhysRevB.77.165107
[7] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100, 136406 (2008),
https://doi.org/10.1103/PhysRevLett.100.136406
[8] Y. Zhao and D.G. Truhlar, Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb–Oxford bound, J. Chem. Phys. 128, 184109 (2008),
https://doi.org/10.1063/1.2912068
[9] Z. Wu and R.E. Cohen, More accurate generalized gradient approximation for solids, Phys. Rev. B 73, 235116 (2006),
https://doi.org/10.1103/PhysRevB.73.235116
[10] R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D'Arco, et al., CRYSTAL14: A program for the ab initio investigation of crystalline solids, Int. J. Quantum Chem. 114, 1287 (2014),
https://doi.org/10.1002/qua.24658
[11] P.J. Hay and W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys. 82, 299 (1985),
https://doi.org/10.1063/1.448975
[12] S. Piskunov, E. Heifets, R. Eglitis, and G. Borstel, Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study, Comput. Mater. Sci. 29, 165 (2004),
https://doi.org/10.1016/j.commatsci.2003.08.036
[13] Š. Masys, V. Jonauskas, S. Grebinskij, S. Mickevičius, V. Pakštas, and M. Senulis, Theoretical and experimental study of non-stoichiometric SrRuO3: a role of oxygen vacancies in electron correlation effects, Lith. J. Phys. 53, 150 (2013),
https://doi.org/10.3952/physics.v53i3.2720
[14] L. Valenzano, F.J. Torres, D. Klaus, F. Pascale, C.M. Zicovich-Wilson, and R. Dovesi, Ab initio study of the vibrational spectrum and related properties of crystalline compounds; the case of CaCO3 calcite, Z. Phys. Chem. 220, 893 (2006),
https://doi.org/10.1524/zpch.2006.220.7.893
[15] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, et al., CRYSTAL14 User's Manual (University of Torino, Torino, 2014)
[16] D.G. Anderson, Iterative procedures for nonlinear integral equations, J. Assoc. Comput. Mach. 12, 547 (1965),
https://doi.org/10.1145/321296.321305
[17] D.R. Hamann, Semiconductor charge densities with hard-core and soft-core pseudopotentials, Phys. Rev. Lett. 42, 662 (1979),
https://doi.org/10.1103/PhysRevLett.42.662
[18] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996),
https://doi.org/10.1103/PhysRevLett.77.3865
[19] S.N. Bushmeleva, V.Y. Pomjakushin, E.V. Pomjakushina, D.V. Sheptyakov, and A.M. Balagurov, Evidence for the band ferromagnetism in SrRuO3 from neutron diffraction, J. Magn. Magn. Mat. 305, 491 (2006),
https://doi.org/10.1016/j.jmmm.2006.02.089
[20] S. Lee, J.R. Zhang, S. Torii, S. Choi, D.-Y. Cho, T. Kamiyama, J. Yu, K.A. McEwen, and J.-G. Park, Large in-plane deformation of RuO6 octahedron and ferromagnetism of bulk SrRuO3, J. Phys. Condens. Matter 25, 465601 (2013),
https://doi.org/10.1088/0953-8984/25/46/465601
[21] Š. Masys and V. Jonauskas, A first-principles study of structural and elastic properties of bulk SrRuO3, J. Chem. Phys. 139, 224705 (2013),
https://doi.org/10.1063/1.4840435
[22] K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44, 1272 (2011),
https://doi.org/10.1107/S0021889811038970