[PDF]    https://doi.org/10.3952/physics.v57i2.3515

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 88–93 (2017)


TIME DELAY OF RADIATION FROM PULSAR IN A BINARY SYSTEM THAT MOVES IN FIELD OF SCHWARZSCHILD BLACK HOLE
Stanislav Komarov, Alexander Gorbatsievich, and Alexander Tarasenko
Department of Theoretical Physics, Belarusian State University, Nezavisimosti Ave., 4, 220030 Minsk, Belarus
E-mail: staskomarov@tut.by

Received 14 March 2017; revised 19 April 2017; accepted 20 June 2017

A compact binary star that moves in a strong external gravitational field of a Schwarzschild black hole is considered. Decomposition of the redshift into a series with respect to the size of the binary system is obtained. This expression is used to calculate the redshift for a model binary system. Possible application of the results is discussed.
Keywords: redshift, time of arrival of pulsar pulses, supermassive black hole, general theory of relativity, reconstruction of motion
PACS: 04.25.dg

DVINARĖS SISTEMOS PULSARO, JUDANČIO ŠVARCŠILDO JUODOSIOS BEDUGNĖS LAUKE, SPINDULIUOTĖS ATSILIKIMAS

Stanislav Komarov, Alexander Gorbatsievich, Alexander Tarasenko
Baltarusijos valstybinis universitetas, Minskas, Baltarusija


References / Nuorodos

[1] F.K. Baganoff, M.W. Bautz, W.N. Brandt, G. Chartas, E.D. Feigelson, G.P. Garmire, Y. Maeda, M. Morris, G.R. Ricker, L.K. Townsley, and F. Walter, Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre, Nature 413, 45–48 (2001),
https://doi.org/10.1038/35092510
[2] M.R. Morris, The environment of the Galaxy’s central black hole, in: The Galactic Black Hole. Lectures on General Relativity and Astrophysics, eds. H.F. Falcke and F.W. Hehl (IOP Publishing Ltd, 2003) pp. 95–122
[3] K. Perez, C.J. Hailey, F.E. Bauer, R.A. Krivonos, K. Mori, F.K. Baganoff, N.M. Barrière, S.E. Boggs, F.E. Christensen, W.W. Craig, et al., Extended hard-X-ray emission in the inner few parsecs of the Galaxy, Nature 520, 646–649 (2015),
https://doi.org/10.1038/nature14353
[4] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, and T. Ott, Monitoring stellar orbits around the Massive Black Hole in the Galactic Center, Astrophys. J 692, 1075–1109 (2009),
https://doi.org/10.1088/0004-637X/692/2/1075
[5] V.E. Zavlin, XMM-Newton observations of four millisecond pulsars, Astrophys. J. 638, 951–962 (2006),
https://doi.org/10.1086/449308
[6] R. Blandford and S.A. Teukolsky, Arrival-time analysis for a pulsar in a binary system, Astrophys. J. 205, 580–591 (1976),
https://doi.org/10.1086/154315
[7] J.W. Weisberg and J.H. Taylor, Relativistic binary pulsar B1913+16: Thirty years of observations and analysis, in: Binary Radio Pulsars, ASP Conference Series, eds. F.A. Rasio and I.H. Stairs (2004), arXiv:astro-ph/0407149,
https://arxiv.org/abs/astro-ph/0407149
[8] N. Wex, Testing relativistic gravity with radio pulsars, arXiv:1402.5594 (2013),
https://arxiv.org/abs/1402.5594
[9] R.T. Edwards, G.B. Hobbs, and R.N. Manchester, Tempo2, a new pulsar timing package – II. The timing model and precision estimates, Mon. Not. R. Astron. Soc. 372, 1549–1574 (2006),
https://arxiv.org/abs/astro-ph/0607664,
https://doi.org/10.1111/j.1365-2966.2006.10870.x
[10] T. Damour and N. Deruelle, General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula, Ann. Inst. Henri Poincaré 44, 263–292 (1986),
http://www.numdam.org/item?id=AIHPA_1986__44_3_263_0
[11] F. Jenet, L.S. Finn, J. Lazio, A. Lommen, M. McLaughlin, I. Stairs, D. Stinebring, J. Verbiest, A. Archibald, Z. Arzoumanian, et al., The North American Nanohertz Observatory for Gravitational Waves, arXiv:1310.0758v1 (2013),
https://arxiv.org/abs/0909.1058
[12] Y. Wang, F.A. Jenet, T. Creighton, and R.H. Price, Strong field effects on pulsar arrival times: circular orbits and equatorial beams, Astrophys. J. 697, 237–246 (2008),
https://doi.org/10.1088/0004-637X/697/1/237
[13] Y. Wang, T. Creighton, R.H. Price, and F.A. Jenet, Strong field effects on pulsar arrival times: general orientations, Astrophys. J. 705, 1252–1259 (2009),
https://doi.org/10.1088/0004-637X/705/2/1252
[14] K. Stovall, T. Creighton, R.H. Price, and F.A. Jenet, Observability of pulsar beam bending by the Sgr~A* black hole, Astrophys. J. 744, 143–150 (2012),
https://doi.org/10.1088/0004-637X/744/2/143
[15] R. Angelil, P. Saha, and D. Merritt, Toward relativistic orbit fitting of Galactic center stars and pulsars, Astrophys. J. 720, 1303–1310 2010,
https://doi.org/10.1088/0004-637X/720/2/1303
[16] K. Liu, N. Wex, M. Kramer, J.M. Cordes, and T.J.W. Lazio, Prospects for probing the spacetime of Sgr A* with pulsars, Astrophys. J. 747, 11–23 (2012),
https://doi.org/10.1088/0004-637X/747/1/1
[17] F. Zhang, Y. Lu, and Q. Yu, On testing the Kerr metric of the massive black hole in the Galactic center via stellar orbital motion: full general relativistic treatment, Astrophys. J. 809, 127 (2015),
https://doi.org/10.1088/0004-637X/809/2/127
[18] A. Gorbatsievich, S. Komarov, and A. Tarasenko, Optical appearance of a compact binary system in the neighbourhood of supermassive black hole, arXiv:1702.08381 (2017),
https://arxiv.org/abs/1702.08381
[19] H. Stephani, Relativity. An Introduction to Special and General Relativity, 3rd ed. (Cambridge University Press, 2004),
https://doi.org/10.1017/CBO9780511616532
[20] J. Sing, Relativity: The General Theory (North-Holland Publishing Company, Amsterdam, 1960)
[21] A. Tarasenko, Reconstruction of a compact object motion in the vicinity of a black hole by its electromagnetic radiation, Phys. Rev. D 81, 123005 (2010),
https://doi.org/10.1103/PhysRevD.81.123005