[PDF]    https://doi.org/10.3952/physics.v57i2.3517

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 103–111 (2017)


TEMPERATURE AND FREQUENCY DEPENDENCE OF THE DIELECTRIC AND PIEZOELECTRIC RESPONSE OF P(VDF-TrFE)/CoFe2O4 MAGNETOELECTRIC COMPOSITES
Šarūnas Svirskasa, Jaroslavas Belovickisa, Daumantas Šemeliovasa, Pedro Martinsb, Senentxu Lanceros-Méndezb,c,d, and Jūras Banysa
aFaculty of Physics, Vilnius University, Saulėtekio 9/3, LT-10222 Vilnius, Lithuania
bDepartment of Physics, University of Minho, 4710-057 Braga, Portugal
cBC Materials, Parque Científico y Tecnológico de Bizkaia, 48160-Derio, Spain
dIKERBASQUE, Basque Foundation for Science, Bilbao, Spain
E-mail: sarunas.svirskas@ff.vu.lt; jaroslavas.belovickis@ff.vu.lt; daumantas.semeliovas@ff.stud.vu.lt; martins@fisica.uminho.pt; lanceros@fisica.uminho.pt; juras.banys@ff.vu.lt

Received 15 March 2017; revised 10 April 2017; accepted 20 June 2017

CoFe2O4 nanoparticles embedded in polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) matrix show suitable properties for practical applications as piezoelectric and magnetoelectric transducers. The knowledge about the dielectric and electromechanical responses of the multiferroic films in a broad frequency and temperature range is essential for applicability. The purpose of this work is to investigate the dielectric, ferroelectric and piezoelectric properties of multiferroic composites based on P(VDF–TrFE) as a host matrix and CoFe2O4 as a magnetic filler. Free-standing films with a different concentration of the filler were investigated. The polarization switching was demonstrated for all the compositions. The polarization displacement hysteresis was achieved at different temperatures. The piezoelectric coefficient d33 is not affected by different concentration of ferrite. On the other hand, the composition with the largest weight % of CoFe2O4 shows higher coercive fields which is not favourable for applications. This indicates that the optimal content of the filler must be determined and taken into account when optimizing both ferroelectric and magnetoelectric properties.
Keywords: polymer-matrix composites (PMCs), smart materials, electrical properties
PACS: 81.05.Lg, 81.07.Bc, 77.55.Nv

DIELEKTRINIO IR PJEZOELEKTRINIO ATSAKO TEMPERATŪRINĖS IR DAŽNINĖS PRIKLAUSOMYBĖS MAGNETOELEKTRINIUOSE P(VDF-TrFE)/CoFe2O4 KOMPOZITUOSE

Šarūnas Svirskasa, Jaroslavas Belovickisa, Daumantas Šemeliovasa, Pedro Martinsb, Senentxu Lanceros-Méndezb,c,d, Jūras Banysa
aVilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
bMinho universitetas, Braga, Portugalija
cBiskajos mokslų ir technologijų parkas, Derio, Ispanija
dIkerbasque – Baskų mokslo fondas, Bilbao, Ispanija

Polivinilideno fluorido-trifluoroetileno (PVDF-TrFE) kopolimerai, palyginti su kitais polimerais, pasižymi geriausiomis pjezoelektrinėmis savybėmis. Darbe tyrinėjamas kompozitų, pagamintų PVDF-TrFE ir kobalto ferito pagrindu, dielektrinis ir pjezoelektrinis atsakas. Dviejų fazių multiferoikai – perspektyvios medžiagos, tačiau feroelektrinės ir magnetinės fazių funkcionalumą tokiose medžiagose realizuoti labai sunku. Visų pirma įtakos turi šių kompozitų homogeniškumas, sandūrų tarp skirtingų fazių savybės. Dėl šios priežasties būtina tyrinėti elektrinį ir elektromechaninį tokių inovatyvių kompozitų atsaką. Tyrimai leidžia nustatyti užpildo įtaką polimero matricai.
Dielektriniai tyrimai atskleidė, kad dalelės pasiskirsčiusios polimerinėje matricoje homogeniškai, nepastebėta parazitinių relaksacijų dėl nekokybiškų sandūrų tarp ferito ir polimero. Pjezoatsakas ir feroelektrinės histerezės yra palyginamos su grynuoju PVDF-TrFE polimeru. Tai reiškia, kad dėl papildomų atsiradusių sandūrų polimero savybės nedegraduoja, elektrinės ir pjezoelektrinės savybės išlieka nepakitusios. Šis rezultatas labai svarbus tolimesnei dvifazių multiferoikų raidai.

References / Nuorodos

[1] N. Ortega, A. Kumar, J.F. Scott, and R.S. Katiyar, Multifunctional magnetoelectric materials for device applications, J. Phys. Condens. Matter 27(50), 1–24 (2015),
https://doi.org/10.1088/0953-8984/27/50/504002
[2] P. Martins, R. Gonçalves, S. Lanceros-Mendez, A. Lasheras, J. Gutiérrez, and J.M. Barandiarán, Effect of filler dispersion and dispersion method on the piezoelectric and magnetoelectric response of CoFe2O4/P(VDF-TrFE) nanocomposites, Appl. Surf. Sci. 313, 215–219 (2014),
https://doi.org/10.1016/j.apsusc.2014.05.187
[3] P. Martins, A. Larrea, R. Gonçalves, G. Botelho, E.V. Ramana, S.K. Mendiratta, V. Sebastian, and S. Lanceros-Menderoz, Novel anisotropic magnetoelectric effect on δ-FeO(OH)/P(VDFTrFE) multiferroic composites, ACS Appl. Mater. Interfaces 7(21), 11224–11229 (2015),
https://doi.org/10.1021/acsami.5b01196
[4] C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys. 103(3), 031101 (2008),
https://doi.org/10.1063/1.2836410
[5] A. Kulkarni, K. Meurisch, I. Teliban, R. Jahns, T. Strunskus, A. Piorra, R. Knöchel, and F. Faupel, Giant magnetoelectric effect at low frequencies in polymer-based thin film composites, Appl. Phys. Lett. 104(2), 022904 (2014),
https://doi.org/10.1063/1.4860664
[6] V. Röbisch, E. Yarar, N.O. Urs, I. Teliban, R. Knöchel, J. McCord, E. Quandt, and D. Meyners, Exchange biased magnetoelectric composites for magnetic field sensor application by frequency conversion, J. Appl. Phys. 117(17), 17B513 (2015),
https://doi.org/10.1063/1.4913814
[7] C. Ribeiro, V. Correia, P. Martins, F.M. Gama, and S. Lanceros-Mendez, Proving the suitability of magnetoelectric stimuli for tissue engineering applications, Colloids Surf. 140, 430–436 (2016),
https://doi.org/10.1016/j.colsurfb.2015.12.055
[8] P. Martins and S. Lanceros-Méndez, Polymer-based magnetoelectric materials, Adv. Funct. Mat. 23(27), 3371–3385 (2013),
https://doi.org/10.1002/adfm.201202780
[9] D. Bhadra, M.G. Masud, S.K. De, and B.K. Chaudhuri, Large magnetoelectric effect and low-loss high relative permittivity in 0–3 CuO/PVDF composite films exhibiting unusual ferromagnetism at room temperature, J. Phys. D 45(48), 485002 (2012),
https://doi.org/10.1088/0022-3727/45/48/485002
[10] P. Martins, X. Moya, L.C. Phillips, S. Kar-Narayan, N.D. Mathur, and S. Lanceros-Mendez, Linear anhysteretic direct magnetoelectric effect in Ni0.5Zn0.5Fe2O4/poly(vinylidene fluoride-trifluoroethylene) 0–3 nanocomposites, J. Phys. D 44(48), 482001 (2011),
https://doi.org/10.1088/0022-3727/44/48/482001
[11] M. Alnassar, A. Alfadhel, Y.P. Ivanov, and J. Kosel, Magnetoelectric polymer nanocomposite for flexible electronics, J. Appl. Phys. 117(17), 17D711 (2015),
https://doi.org/10.1063/1.4913943
[12] P. Martins, A.C. Lopes, and S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications, Prog. Polym. Sci. 39(4), 683–706 (2014),
https://doi.org/10.1016/j.progpolymsci.2013.07.006
[13] S. Svirskas, M. Simenas, J. Banys, P. Martins, and S. Lanceros-Mendez, Dielectric relaxation and ferromagnetic resonance in magnetoelectric (polyvinylidene-fluoride)/ferrite composites, J. Polym. Res. 22(7), 141 (2015),
https://doi.org/10.1007/s10965-015-0780-9
[14] P. Martins, X. Moya, C. Caparrós, J. Fernandez, N.D. Mathur, and S. Lanceros-Mendez, Large linear anhysteretic magnetoelectric voltage coefficients in CoFe2O4/polyvinylidene fluoride 0–3 nanocomposites, J. Nanopart. Res. 15(8), 1825 (2013),
https://doi.org/10.1007/s11051-013-1825-9
[15] P. Martins, A. Lasheras, J. Gutierrez, J.M. Barandiaran, I. Orue, and S. Lanceros-Mendez, Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites, J. Phys. D 44(49), 495303 (2011),
https://doi.org/10.1088/0022-3727/44/49/495303
[16] J.X. Zhang, J.Y. Dai, L.C. So, C.L. Sun, C.Y. Lo, S.W. Or, and H.L.W. Chan, The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0–3 nanocomposites, J. Appl. Phys. 105(5), 054102 (2009),
https://doi.org/10.1063/1.3078111
[17] A. Maceiras, P. Martins, R. Goncalves, G. Botelho, E. Venkata Ramana, S.K. Mendiratta, M. San Sebastián, J.L. Vilas, S. Lanceros-Mendez, and L.M. León, High-temperature polymer based magnetoelectric nanocomposites, Eur. Polym. J. 64, 224–228 (2015),
https://doi.org/10.1016/j.eurpolymj.2015.01.020
[18] A. Sakanas, R. Grigalaitis, J. Banys, L. Mitoseriu, V. Buscaglia, and P. Nanni, Broadband dielectric spectroscopy of BaTiO3-Ni0.5Zn0.5Fe2O4 composite ceramics, J. Alloys Compd. 602, 241–247 (2014),
https://doi.org/10.1016/j.jallcom.2014.03.041
[19] T. Furukawa, Y. Tajitsu, X. Zhang, and G.E. Johnson, Dielectric relaxations in copolymers of vinylidene fluoride, Ferroelectrics 135(1), 401–417 (1992),
https://doi.org/10.1080/00150199208230041
[20] N.G. McCrum, B.E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967)
[21] A. Lonjon, Nanocomposite conducteur polymère – nanofils métalliques: élaboration et analyse des propriétés physiques, PhD thesis (Université Paul Sabatier, Toulouse, 2010),
[PDF]
[22] P. Martins, C.M. Costa, and S. Lanceros-Mendez, Nucleation of electroactive β-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites, Appl. Phys. A 103(1), 233–237 (2011),
https://doi.org/10.1007/s00339-010-6003-7
[23] D. Fragiadakis, P. Pissis, and L. Bokobza, Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites, Polymer 46(16), 6001–6008 (2005),
https://doi.org/10.1016/j.polymer.2005.05.080
[24] V. Bharti and Q.M. Zhang, Dielectric study of the relaxor ferroelectric poly(vinylidene fluoridetrifluoroethylene) copolymer system, Phys. Rev. B 63(18), 1841031 (2001),
https://doi.org/10.1103/PhysRevB.63.184103
[25] T.R. Dargaville, M. Celina, and P.M. Chaplya, Evaluation of piezoelectric poly(vinylidene fluoride) polymers for use in space environments. I. Temperature limitations, J. Polym. Sci. B. 43(11), 1310–1320 (2005),
https://doi.org/10.1002/polb.20436
[26] D.Y. Kusuma, C.A. Nguyen, and P.S. Lee, Enhanced ferroelectric switching characteristics of P(VDF-TrFE) for organic memory devices, J. Phys. Chem. B 114(42), 13289 (2010),
https://doi.org/10.1021/jp105249f
[27] M.V. Silibin, J. Belovickis, S. Svirskas, M. Ivanov, J. Banys, A.V. Solnyshkin, S.A. Gavrilov, O.V. Varenyk, A.S. Pusenkova, N. Morozovsky, V.V. Shvartsman, and A.N. Morozovska, Polarization reversal in organic-inorganic ferroelectric composites: Modeling and experiment, Appl. Phys. Lett. 107(17), 142907 (2015),
https://doi.org/10.1063/1.4932661
[28] S. Ducharme, V.M. Fridkin, A.V. Bune, S.P. Palto, L.M. Blinov, N.N. Petukhova, and S.G. Yudin, Intrinsic ferroelectric coercive field, Phys. Rev. Lett. 84(1), 175–177 (2000),
https://doi.org/10.1103/PhysRevLett.84.175
[29] J. Simpson, Z. Ounaies, and C. Fay, Polarization and piezoelectric properties of a nitrile substituted polyimide, Mater. Res. Soc. Proceedings 459, 59–64 (1997), 
https://doi.org/10.1557/PROC-459-59
[30] P. Destruel, F.S. Rojas, D. Tougne, and H.T. Giam, Pressure and temperature dependence of the electromechanical properties of polarized polyvinylidene fluoride films, J. Appl. Phys. 56(11), 3298–3303 (1984),
https://doi.org/10.1063/1.333851