E-mail: sarunas.svirskas@ff.vu.lt;
jaroslavas.belovickis@ff.vu.lt;
daumantas.semeliovas@ff.stud.vu.lt; martins@fisica.uminho.pt;
lanceros@fisica.uminho.pt; juras.banys@ff.vu.lt
Received 15 March 2017; revised 10 April 2017; accepted 20 June
2017
DIELEKTRINIO IR PJEZOELEKTRINIO
ATSAKO TEMPERATŪRINĖS IR DAŽNINĖS PRIKLAUSOMYBĖS
MAGNETOELEKTRINIUOSE P(VDF-TrFE)/CoFe2O4
KOMPOZITUOSE
Polivinilideno fluorido-trifluoroetileno
(PVDF-TrFE) kopolimerai, palyginti su kitais polimerais,
pasižymi geriausiomis pjezoelektrinėmis savybėmis. Darbe
tyrinėjamas kompozitų, pagamintų PVDF-TrFE ir kobalto ferito
pagrindu, dielektrinis ir pjezoelektrinis atsakas. Dviejų fazių
multiferoikai – perspektyvios medžiagos, tačiau feroelektrinės
ir magnetinės fazių funkcionalumą tokiose medžiagose realizuoti
labai sunku. Visų pirma įtakos turi šių kompozitų
homogeniškumas, sandūrų tarp skirtingų fazių savybės. Dėl šios
priežasties būtina tyrinėti elektrinį ir elektromechaninį tokių
inovatyvių kompozitų atsaką. Tyrimai leidžia nustatyti užpildo
įtaką polimero matricai.
Dielektriniai tyrimai atskleidė, kad dalelės pasiskirsčiusios
polimerinėje matricoje homogeniškai, nepastebėta parazitinių
relaksacijų dėl nekokybiškų sandūrų tarp ferito ir polimero.
Pjezoatsakas ir feroelektrinės histerezės yra palyginamos su
grynuoju PVDF-TrFE polimeru. Tai reiškia, kad dėl papildomų
atsiradusių sandūrų polimero savybės nedegraduoja, elektrinės ir
pjezoelektrinės savybės išlieka nepakitusios. Šis rezultatas
labai svarbus tolimesnei dvifazių multiferoikų raidai.
References
/
Nuorodos
[1] N. Ortega, A. Kumar,
J.F. Scott, and R.S. Katiyar, Multifunctional magnetoelectric
materials for device applications, J. Phys. Condens. Matter
27(50),
1–24 (2015),
https://doi.org/10.1088/0953-8984/27/50/504002
[2] P. Martins, R. Gonçalves, S. Lanceros-Mendez, A. Lasheras,
J. Gutiérrez, and J.M. Barandiarán, Effect of filler dispersion
and dispersion method on the piezoelectric and magnetoelectric
response of CoFe
2O
4/P(VDF-TrFE)
nanocomposites, Appl. Surf. Sci.
313, 215–219 (2014),
https://doi.org/10.1016/j.apsusc.2014.05.187
[3] P. Martins, A. Larrea, R. Gonçalves, G. Botelho, E.V.
Ramana, S.K. Mendiratta, V. Sebastian, and S. Lanceros-Menderoz,
Novel anisotropic magnetoelectric effect on
δ-FeO(OH)/P(VDFTrFE)
multiferroic composites, ACS Appl. Mater. Interfaces
7(21),
11224–11229 (2015),
https://doi.org/10.1021/acsami.5b01196
[4] C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G.
Srinivasan, Multiferroic magnetoelectric composites: Historical
perspective, status, and future directions, J. Appl. Phys.
103(3),
031101 (2008),
https://doi.org/10.1063/1.2836410
[5] A. Kulkarni, K. Meurisch, I. Teliban, R. Jahns, T.
Strunskus, A. Piorra, R. Knöchel, and F. Faupel, Giant
magnetoelectric effect at low frequencies in polymer-based thin
film composites, Appl. Phys. Lett.
104(2), 022904
(2014),
https://doi.org/10.1063/1.4860664
[6] V. Röbisch, E. Yarar, N.O. Urs, I. Teliban, R. Knöchel, J.
McCord, E. Quandt, and D. Meyners, Exchange biased
magnetoelectric composites for magnetic field sensor application
by frequency conversion, J. Appl. Phys.
117(17), 17B513
(2015),
https://doi.org/10.1063/1.4913814
[7] C. Ribeiro, V. Correia, P. Martins, F.M. Gama, and S.
Lanceros-Mendez, Proving the suitability of magnetoelectric
stimuli for tissue engineering applications, Colloids Surf.
140,
430–436 (2016),
https://doi.org/10.1016/j.colsurfb.2015.12.055
[8] P. Martins and S. Lanceros-Méndez, Polymer-based
magnetoelectric materials, Adv. Funct. Mat.
23(27),
3371–3385 (2013),
https://doi.org/10.1002/adfm.201202780
[9] D. Bhadra, M.G. Masud, S.K. De, and B.K. Chaudhuri, Large
magnetoelectric effect and low-loss high relative permittivity
in 0–3 CuO/PVDF composite films exhibiting unusual
ferromagnetism at room temperature, J. Phys. D
45(48),
485002 (2012),
https://doi.org/10.1088/0022-3727/45/48/485002
[10] P. Martins, X. Moya, L.C. Phillips, S. Kar-Narayan, N.D.
Mathur, and S. Lanceros-Mendez, Linear anhysteretic direct
magnetoelectric effect in Ni
0.5Zn
0.5Fe
2O
4/poly(vinylidene
fluoride-trifluoroethylene) 0–3 nanocomposites, J. Phys. D
44(48),
482001 (2011),
https://doi.org/10.1088/0022-3727/44/48/482001
[11] M. Alnassar, A. Alfadhel, Y.P. Ivanov, and J. Kosel,
Magnetoelectric polymer nanocomposite for flexible electronics,
J. Appl. Phys.
117(17), 17D711 (2015),
https://doi.org/10.1063/1.4913943
[12] P. Martins, A.C. Lopes, and S. Lanceros-Mendez,
Electroactive phases of poly(vinylidene fluoride):
Determination, processing and applications, Prog. Polym. Sci.
39(4),
683–706 (2014),
https://doi.org/10.1016/j.progpolymsci.2013.07.006
[13] S. Svirskas, M. Simenas, J. Banys, P. Martins, and S.
Lanceros-Mendez, Dielectric relaxation and ferromagnetic
resonance in magnetoelectric (polyvinylidene-fluoride)/ferrite
composites, J. Polym. Res.
22(7), 141 (2015),
https://doi.org/10.1007/s10965-015-0780-9
[14] P. Martins, X. Moya, C. Caparrós, J. Fernandez, N.D.
Mathur, and S. Lanceros-Mendez, Large linear anhysteretic
magnetoelectric voltage coefficients in CoFe
2O
4/polyvinylidene
fluoride 0–3 nanocomposites, J. Nanopart. Res.
15(8),
1825 (2013),
https://doi.org/10.1007/s11051-013-1825-9
[15] P. Martins, A. Lasheras, J. Gutierrez, J.M. Barandiaran, I.
Orue, and S. Lanceros-Mendez, Optimizing piezoelectric and
magnetoelectric responses on CoFe
2O
4/P(VDF-TrFE)
nanocomposites, J. Phys. D
44(49), 495303 (2011),
https://doi.org/10.1088/0022-3727/44/49/495303
[16] J.X. Zhang, J.Y. Dai, L.C. So, C.L. Sun, C.Y. Lo, S.W. Or,
and H.L.W. Chan, The effect of magnetic nanoparticles on the
morphology, ferroelectric, and magnetoelectric behaviors of
CFO/P(VDF-TrFE) 0–3 nanocomposites, J. Appl. Phys.
105(5),
054102 (2009),
https://doi.org/10.1063/1.3078111
[17] A. Maceiras, P. Martins, R. Goncalves, G. Botelho, E.
Venkata Ramana, S.K. Mendiratta, M. San Sebastián, J.L. Vilas,
S. Lanceros-Mendez, and L.M. León, High-temperature polymer
based magnetoelectric nanocomposites, Eur. Polym. J.
64,
224–228 (2015),
https://doi.org/10.1016/j.eurpolymj.2015.01.020
[18] A. Sakanas, R. Grigalaitis, J. Banys, L. Mitoseriu, V.
Buscaglia, and P. Nanni, Broadband dielectric spectroscopy of
BaTiO
3-Ni
0.5Zn
0.5Fe
2O
4
composite ceramics, J. Alloys Compd.
602, 241–247
(2014),
https://doi.org/10.1016/j.jallcom.2014.03.041
[19] T. Furukawa, Y. Tajitsu, X. Zhang, and G.E. Johnson,
Dielectric relaxations in copolymers of vinylidene fluoride,
Ferroelectrics
135(1), 401–417 (1992),
https://doi.org/10.1080/00150199208230041
[20] N.G. McCrum, B.E. Read, and G. Williams,
Anelastic and
Dielectric Effects in Polymeric Solids (Wiley, New York,
1967)
[21] A. Lonjon, N
anocomposite conducteur polymère – nanofils
métalliques: élaboration et analyse des propriétés physiques,
PhD thesis (Université Paul Sabatier, Toulouse, 2010),
[PDF]
[22] P. Martins, C.M. Costa, and S. Lanceros-Mendez, Nucleation
of electroactive
β-phase poly(vinilidene fluoride) with
CoFe
2O
4 and NiFe
2O
4
nanofillers: a new method for the preparation of multiferroic
nanocomposites, Appl. Phys. A
103(1), 233–237 (2011),
https://doi.org/10.1007/s00339-010-6003-7
[23] D. Fragiadakis, P. Pissis, and L. Bokobza, Glass transition
and molecular dynamics in poly(dimethylsiloxane)/silica
nanocomposites, Polymer
46(16), 6001–6008 (2005),
https://doi.org/10.1016/j.polymer.2005.05.080
[24] V. Bharti and Q.M. Zhang, Dielectric study of the relaxor
ferroelectric poly(vinylidene fluoridetrifluoroethylene)
copolymer system, Phys. Rev. B
63(18), 1841031 (2001),
https://doi.org/10.1103/PhysRevB.63.184103
[25] T.R. Dargaville, M. Celina, and P.M. Chaplya, Evaluation of
piezoelectric poly(vinylidene fluoride) polymers for use in
space environments. I. Temperature limitations, J. Polym. Sci.
B.
43(11), 1310–1320 (2005),
https://doi.org/10.1002/polb.20436
[26] D.Y. Kusuma, C.A. Nguyen, and P.S. Lee, Enhanced
ferroelectric switching characteristics of P(VDF-TrFE) for
organic memory devices, J. Phys. Chem. B
114(42), 13289
(2010),
https://doi.org/10.1021/jp105249f
[27] M.V. Silibin, J. Belovickis, S. Svirskas, M. Ivanov, J.
Banys, A.V. Solnyshkin, S.A. Gavrilov, O.V. Varenyk, A.S.
Pusenkova, N. Morozovsky, V.V. Shvartsman, and A.N. Morozovska,
Polarization reversal in organic-inorganic ferroelectric
composites: Modeling and experiment, Appl. Phys. Lett.
107(17),
142907 (2015),
https://doi.org/10.1063/1.4932661
[28] S. Ducharme, V.M. Fridkin, A.V. Bune, S.P. Palto, L.M.
Blinov, N.N. Petukhova, and S.G. Yudin, Intrinsic ferroelectric
coercive field, Phys. Rev. Lett.
84(1), 175–177 (2000),
https://doi.org/10.1103/PhysRevLett.84.175
[29] J. Simpson, Z. Ounaies, and C. Fay, Polarization and
piezoelectric properties of a nitrile substituted polyimide,
Mater. Res. Soc. Proceedings
459, 59–64 (1997),
https://doi.org/10.1557/PROC-459-59
[30] P. Destruel, F.S. Rojas, D. Tougne, and H.T. Giam, Pressure
and temperature dependence of the electromechanical properties
of polarized polyvinylidene fluoride films, J. Appl. Phys.
56(11),
3298–3303 (1984),
https://doi.org/10.1063/1.333851