[PDF]    https://doi.org/10.3952/physics.v57i3.3541

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 113–157 (2017)

Review

ULTRAFAST SUPERCONTINUUM GENERATION IN BULK CONDENSED MEDIA
Audrius Dubietisa, Gintaras Tamošauskasa, Rosvaldas Šuminasa, Vytautas Juknab,c, and Arnaud Couaironc
aLaser Research Center, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
bLaboratoire d’Optique Appliquée, ENSTA ParisTech, Ecole Polytechnique, Université Paris-Saclay, F-91762 Palaiseau, France
cCentre de Physique Théorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau, France
audrius.dubietis@ff.vu.lt

Received 8 June 2017; accepted 15 June 2017

Nonlinear propagation of intense femtosecond laser pulses in bulk transparent media leads to a specific propagation regime, termed femtosecond filamentation, which in turn produces dramatic spectral broadening, or superbroadening, termed supercontinuum generation. Femtosecond supercontinuum generation in transparent solids represents a compact, efficient and alignment-insensitive technique for generation of coherent broadband radiation at various parts of the optical spectrum, which finds numerous applications in diverse fields of modern ultrafast science. During recent years, this research field has reached a high level of maturity, both in understanding of the underlying physics and in achievement of exciting practical results. In this paper we overview the state-of-the-art femtosecond supercontinuum generation in various transparent solid-state media, ranging from wide-bandgap dielectrics to semiconductor materials and in various parts of the optical spectrum, from the ultraviolet to the mid-infrared spectral range. A particular emphasis is given to the most recent experimental developments: multioctave supercontinuum generation with pumping in the mid-infrared spectral range, spectral control, power and energy scaling of broadband radiation and the development of simple, flexible and robust pulse compression techniques, which deliver few optical cycle pulses and which could be readily implemented in a variety of modern ultrafast laser systems.
Keywords: supercontinuum generation, femtosecond filamentation, optical parametric amplification, pulse compression
PACS: 42.65.Jx, 42.65.Re

Apžvalga

FEMTOSEKUNDINIO SUPERKONTINUUMO GENERAVIMAS PLAČIOS APERTŪROS KONDENSUOTOSE TERPĖSE
Audrius Dubietisa, Gintaras Tamošauskasa, Rosvaldas Šuminasa, Vytautas Juknab,c, Arnaud Couaironc

aVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
bTaikomosios optikos laboratorija, Paryžiaus Saklė universitetas, Paleso, Prancūzija
cTeorinės fizikos centras, Paryžiaus Saklė universitetas, Paleso, Prancūzija


References / Nuorodos

[1] J.M. Dudley, G. Genty, and S. Coen, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys. 78, 1135–1184 (2006),
https://doi.org/10.1103/RevModPhys.78.1135
[2] J.H.V. Price, X. Feng, A.M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W.H. Loh, H.N. Rutt, and D.J. Richardson, Supercontinuum generation in non-silica fibers, Opt. Fiber Technol. 18, 327–344 (2012),
https://doi.org/10.1016/j.yofte.2012.07.013
[3] P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wang, A.K. George, C.M.B. Cordeiro, J.C. Knight, and F.G. Omenetto, Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs, Opt. Express 16, 7161–7168 (2008),
https://doi.org/10.1364/OE.16.007161
[4] C.R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nature Photon. 8, 830–834 (2014),
https://doi.org/10.1038/nphoton.2014.213
[5] D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, White light generation over three octaves by femtosecond filament at 3.9 μm in argon, Opt. Lett. 37, 3456– 3458 (2012),
https://doi.org/10.1364/OL.37.003456
[6] A.V. Mitrofanov, A.A. Voronin, S.I. Mitryukovskiy, D.A. Sidorov-Biryukov, A. Pugžlys, G. Andriukaitis, T. Flöry, E.A. Stepanov, A.B. Fedotov, A. Baltuška, and A.M. Zheltikov, Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics, Opt. Lett. 40, 2068–2071 (2015),
https://doi.org/10.1364/OL.40.002068
[7] R.R. Alfano and L. Shapiro, Emission in the region 4000 to 7000 Å via four photon coupling in glass, Phys. Rev. Lett. 24, 584–587 (1970),
https://doi.org/10.1103/PhysRevLett.24.584
[8] R.R. Alfano and L. Shapiro, Observation of self-phase modulation and small-scale filaments in crystals and glasses, Phys. Rev. Lett. 24, 592–594 (1970),
https://doi.org/10.1103/PhysRevLett.24.592
[9] The Supercontinuum Laser Source, ed. R.R. Alfano (Springer, 2006),
https://doi.org/10.1007/b106776
[10] R.L. Fork, C.V. Shank, C. Hirlimann, R. Yen, and W.J. Tomlinson, Femtosecond white-light continuum pulses, Opt. Lett. 8, 1–3 (1983),
https://doi.org/10.1364/OL.8.000001
[11] M. Witmann and A. Penzkofer, Spectral super-broadening of femtosecond laser pulses, Opt. Commun. 126, 308–317 (1996),
https://doi.org/10.1016/0030-4018(95)00758-X
[12] D.E. Spence, P.N. Kean, and W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett. 16, 42–44 (1991),
https://doi.org/10.1364/OL.16.000042
[13] T.B. Norris, Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation, Opt. Lett. 17, 1009–1011 (1992),
https://doi.org/10.1364/OL.17.001009
[14] S. Backus, C.G. Durfee, M.M. Murnane, and H.C. Kapteyn, High power ultrafast lasers, Rev. Sci. Instr. 69, 1207–1223 (1998),
https://doi.org/10.1063/1.1148795
[15] A. Brodeur and S.L. Chin, Band-gap dependence of the ultrafast white-light continuum, Phys. Rev. Lett. 80, 4406–4409 (1998),
https://doi.org/10.1103/PhysRevLett.80.4406
[16] A. Brodeur and S.L. Chin, Ultrafast white-light continuum generation and self-focusing in transparent condensed media, J. Opt. Soc. Am. B 16, 637–650 (1999),
https://doi.org/10.1364/JOSAB.16.000637
[17] K.R. Wilson and V.V. Yakovlev, Ultrafast rainbow: Tunable ultrashort pulses from a solid-state kilohertz system, J. Opt. Soc. Am. B 14, 444–448 (1997),
https://doi.org/10.1364/JOSAB.14.000444
[18] A. Couairon, V. Jukna, J. Darginavičius, D. Majus, N. Garejev, I. Gražulevičiūtė, G. Valiulis, G. Tamošauskas, A. Dubietis, F. Silva, et al., in: Laser Filamentation, CRM Series in Mathematical Physics, eds. A.D. Bandrauk et al. (Springer, 2016) pp. 147–165,
https://doi.org/10.1007/978-3-319-23084-9_6
[19] S.L. Chin, S. Petit, F. Borne and K. Miyazaki, The white light supercontinuum is indeed an ultrafast white light laser, Jpn. J. Appl. Phys. 38, L126–128 (1999),
https://doi.org/10.1143/JJAP.38.L126
[20] W. Watanabe and K. Itoh, Spatial coherence of supercontinuum emitted from multiple filaments, Jpn. J. Appl. Phys. 40, 592–595 (2001),
https://doi.org/10.1143/JJAP.40.592
[21] B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, and O. Vasseur, Spatial mode cleaning by femtosecond filamentation in air, Opt. Lett. 31, 2601–2603 (2006),
https://doi.org/10.1364/OL.31.002601
[22] D. Wegkamp, D. Brida, S. Bonora, G. Cerullo, J. Stähler, M. Wolf, and S. Wall, Phase retrieval and compression of low-power white-light pulses, Appl. Phys. Lett. 99, 101101 (2011),
https://doi.org/10.1063/1.3635396
[23] K. Midorikawa, H. Kawano, A. Suda, C. Nagura, and M. Obara, Polarization properties of ultrafast white-light continuum generated in condensed media, Appl. Phys. Lett. 80, 923–925 (2002),
https://doi.org/10.1063/1.1448146
[24] A.K. Dharmadhikari, F.A. Rajgara, and D. Mathur, Depolarization of white light generated by ultrashort laser pulses in optical media, Opt. Lett. 31, 2184–2186 (2006),
https://doi.org/10.1364/OL.31.002184
[25] R.S.S. Kumar, K.L.N. Deepak, and D.N. Rao, Depolarization properties of the femtosecond supercontinuum generated in condensed media, Phys. Rev. A 78, 043818 (2008),
https://doi.org/10.1103/PhysRevA.78.043818
[26] M. Bradler, P. Baum, and E. Riedle, Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses, Appl. Phys. B 97, 561–574 (2009),
https://doi.org/10.1007/s00340-009-3699-1
[27] U. Megerle, I. Pugliesi, C. Schriever, C.F. Sailer, and E. Riedle, Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground, Appl. Phys. B 96, 215–231 (2009),
https://doi.org/10.1007/s00340-009-3610-0
[28] D. Majus, V. Jukna, E. Pileckis, G. Valiulis, and A. Dubietis, Rogue-wave-like statistics in ultrafast white-light continuum generation in sapphire, Opt. Express 19, 16317–16323 (2011),
https://doi.org/10.1364/OE.19.016317
[29] A. van de Walle, M. Hanna, F. Guichard, Y. Zaouter, A. Thai, N. Forget, and P. Georges, Spectral and spatial full-bandwidth correlation analysis of bulk-generated supercontinuum in the mid-infrared, Opt. Lett. 40, 673–675 (2015),
https://doi.org/10.1364/OL.40.000673
[30] D. Majus and A. Dubietis, Statistical properties of ultrafast supercontinuum generated by femtosecond Gaussian and Bessel beams: a comparative study, J. Opt. Soc. Am. B 30, 994–999 (2013),
https://doi.org/10.1364/JOSAB.30.000994
[31] M. Bradler and E. Riedle, Temporal and spectral correlations in bulk continua and improved use in transient spectroscopy, J. Opt. Soc. Am. B 31, 1465–1475 (2014),
https://doi.org/10.1364/JOSAB.31.001465
[32] G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui, Femtosecond pump/supercontinuumprobe setup with 20 kHz repetition rate, Rev. Sci. Instrum. 83, 093105 (2012),
https://doi.org/10.1063/1.4750978
[33] C. Calabrese, A.M. Stingel, L. Shen, and P.B. Petersen, Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution, Opt. Lett. 37, 2265–2267 (2012),
https://doi.org/10.1364/OL.37.002265
[34] E. Riedle, M. Bradler, M. Wenninger, C.F. Sailer, and I. Pugliesi, Electronic transient spectroscopy from the deep-UV to the NIR: unambiguous disentanglement of complex processes, Faraday Discuss. 163, 139–158 (2013),
https://doi.org/10.1039/c3fd00010a
[35] M. Balu, J. Hales, D.J. Hagan, and E.W. Van Stryland, White-light continuum Z-scan technique for nonlinear materials characterization, Opt. Express 12, 3820–3826 (2004),
https://doi.org/10.1364/OPEX.12.003820
[36] L. De Boni, A.A. Andrade, L. Misoguti, C. Mendonça, and S.C. Zilio, Z-scan measurements using femtosecond continuum generation, Opt. Express 12, 3921–3927 (2004),
https://doi.org/10.1364/OPEX.12.003921
[37] K. Cook, A.K. Kar, and R.A. Lamb, White-light supercontinuum interference of self-focused filaments in water, Appl. Phys. Lett. 83, 3861–3863 (2003),
https://doi.org/10.1063/1.1624640
[38] C. Corsi, A. Tortora, and M. Bellini, Generation of a variable linear array of phase-coherent supercontinuum sources, Appl. Phys. B 78, 299–304 (2004),
https://doi.org/10.1007/s00340-003-1381-6
[39] M. Bellini and T.W. Hänsch, Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer, Opt. Lett. 25, 1049–1051 (2000),
https://doi.org/10.1364/OL.25.001049
[40] M. Bellini and T.W. Hänsch, Generation and applications of phase-locked white-light continuum pulses, Laser Part. Beams 19, 157–159 (2001),
https://doi.org/10.1017/S0263034601191251
[41] A. Tortora, C. Corsi, and M. Bellini, Comb-like supercontinuum generation in bulk media, Appl. Phys. Lett. 85, 1113–1115 (2004),
https://doi.org/10.1063/1.1784041
[42] P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, Phase-coherent generation of tunable visible femtosecond pulses, Opt. Lett. 28, 185–187 (2003),
https://doi.org/10.1364/OL.28.000185
[43] P. Baum, E. Riedle, M. Greve, and H.R. Telle, Phase-locked ultrashort pulse trains at separate and independently tunable wavelengths, Opt. Lett. 30, 2028–2030 (2005),
https://doi.org/10.1364/OL.30.002028
[44] Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics, Phys. Rev. Lett. 110, 097601 (2013),
https://doi.org/10.1103/PhysRevLett.110.097601
[45] G. Cerullo and S. De Silvestri, Ultrafast optical parametric amplifiers, Rev. Sci. Instrum. 74, 1–18 (2003),
https://doi.org/10.1063/1.1523642
[46] T. Wilhelm, J. Piel, and E. Riedle, Sub-20-fs pulses tunable across the visible from a blue-pumped single pass noncollinear parametric converter, Opt. Lett. 22, 1494–1496 (1997),
https://doi.org/10.1364/OL.22.001494
[47] D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers, J. Opt. 12, 013001 (2010),
https://doi.org/10.1088/2040-8978/12/1/013001
[48] C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties, Phys. Rev. A 79, 033818 (2009),
https://doi.org/10.1103/PhysRevA.79.033818
[49] A. Dubietis, R. Butkus, and A.P. Piskarskas, Trends in chirped pulse optical parametric amplification, IEEE J. Sel. Top. Quant. Electron. 12, 163–172 (2006),
https://doi.org/10.1109/JSTQE.2006.871962
[50] A. Harth, M. Schultze, T. Lang, T. Binhammer, S. Rausch, and U. Morgner, Two-color pumped OPCPA system emitting spectra spanning 1.5 octaves from VIS to NIR, Opt. Express 20, 3076– 3081 (2012),
https://doi.org/10.1364/OE.20.003076
[51] M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, et al., Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification, Opt. Lett. 36, 2456–2458 (2011),
https://doi.org/10.1364/OL.36.002456
[52] R. Budriūnas, T. Stanislauskas, J. Adamonis, A. Aleknavičius, G. Veitas, D. Gadonas, S. Balickas, A. Michailovas, and A. Varanavičius, 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate, Opt. Express 25, 5797–5806 (2017),
https://doi.org/10.1364/OE.25.005797
[53] S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Thberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, and H. Schroeder, The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges, Can. J. Phys. 83, 863–905 (2005),
https://doi.org/10.1139/p05-048
[54] A. Couairon and A. Mysyrowicz, Femtosecond filamentation in transparent media, Phys. Rep. 441, 47–190 (2007),
https://doi.org/10.1016/j.physrep.2006.12.005
[55] L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Ultrashort filaments of light in weakly ionized, optically transparent media, Rep. Prog. Phys. 70, 1633–1713 (2007),
https://doi.org/10.1088/0034-4885/70/10/R03
[56] V.P. Kandidov, S.A. Shlenov, and O.G. Kosareva, Filamentation of high-power femtosecond laser radiation, Quantum Electron. 39, 205–228 (2009),
https://doi.org/10.1070/QE2009v039n03ABEH013916
[57] J.H. Marburger, Self-focusing: Theory, Prog. Quantum Electron. 4, 35–110 (1975),
https://doi.org/10.1016/0079-6727(75)90003-8
[58] A. Dubietis, A. Couairon, E. Kučinskas, G. Tamošauskas, E. Gaižauskas, D. Faccio, and P. Di Trapani, Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water, Appl. Phys. B 84, 439–446 (2006),
https://doi.org/10.1007/s00340-006-2249-3
[59] M. Sheik-Bahae, D.J. Hagan, and E.W. Van Stryland, Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption, Phys. Rev. Lett. 65, 96– 99 (1990),
https://doi.org/10.1103/PhysRevLett.65.96
[60] W. Liu, S. Petit, A. Becker, N. Aközbek, C.M. Bowden, and S.L. Chin, Intensity clamping of a femtosecond laser pulse in condensed matter, Opt. Commun. 202, 189–197 (2002),
https://doi.org/10.1016/S0030-4018(01)01698-4
[61] M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright, Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation, Phys. Rev. Lett. 91, 043905 (2003),
https://doi.org/10.1103/PhysRevLett.91.043905
[62] M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright, Theory and simulation of supercontinuum generation in transparent bulk media, Appl. Phys. B 77, 185–195 (2003),
https://doi.org/10.1007/s00340-003-1178-7
[63] S. Skupin and L. Bergé, Self-guiding of femtosecond light pulses in condensed media: Plasma generation versus chromatic dispersion, Physica D 220, 14–30 (2006),
https://doi.org/10.1016/j.physd.2006.06.006
[64] P. Chernev and V. Petrov, Self-focusing of light pulses in the presence of normal group-velocity dispersion, Opt. Lett. 17, 172–174 (1992),
https://doi.org/10.1364/OL.17.000172
[65] J.E. Rothenberg, Pulse splitting during self-focusing in normally dispersive media, Opt. Lett. 17, 583–585 (1992),
https://doi.org/10.1364/OL.17.000583
[66] J.E. Rothenberg, Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses, Opt. Lett. 17, 1340–1342 (1992),
https://doi.org/10.1364/OL.17.001340
[67] G. Fibich and G.C. Papanicolaou, Self-focusing in the presence of small time dispersion and non-paraxiality, Opt. Lett. 22, 1397–1399 (1997),
https://doi.org/10.1364/OL.22.001379
[68] J.K. Ranka, R.W. Schirmer, and A.L. Gaeta, Observation of pulse splitting in nonlinear dispersive media, Phys. Rev. Lett. 77, 3783–3786 (1996),
https://doi.org/10.1103/PhysRevLett.77.3783
[69] J.K. Ranka and A.L. Gaeta, Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses, Opt. Lett. 23, 534–536 (1998),
https://doi.org/10.1364/OL.23.000534
[70] S.A. Diddams, H.K. Eaton, A.A. Zozulya, and T.S. Clement, Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media, Opt. Lett. 23, 379–381 (1998),
https://doi.org/10.1364/OL.23.000379
[71] A.A. Zozulya, S.A. Diddams, A.G. Van Engen, and T.S. Clement, Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation, Phys. Rev. Lett. 82, 1430–1433 (1999),
https://doi.org/10.1103/PhysRevLett.82.1430
[72] A.L. Gaeta, Catastrophic collapse of ultrashort pulses, Phys. Rev. Lett. 84, 3582–3585 (2000),
https://doi.org/10.1103/PhysRevLett.84.3582
[73] A.L. Gaeta, Spatial and temporal dynamics of collapsing ultrashort laser pulses, Topics Appl. Phys. 114, 399–412 (2009),
https://doi.org/10.1007/978-0-387-34727-1_16
[74] Y. Silberberg, Collapse of optical pulses, Opt. Lett. 15, 1282–1284 (1990),
https://doi.org/10.1364/OL.15.001282
[75] L. Bergé and S. Skupin, Self-channeling of ultrashort laser pulses in materials with anomalous dispersion, Phys. Rev. E 71, 065601(R) (2005),
https://doi.org/10.1103/PhysRevE.71.065601
[76] J. Liu, R. Li, and Z. Xu, Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion, Phys. Rev. A 74, 043801 (2006),
https://doi.org/10.1103/PhysRevA.74.043801
[77] S.V. Chekalin, V.O. Kompanets, E.O. Smetanina, and V.P. Kandidov, Light bullets and supercontinuum spectrum during femtosecond pulse filamentation under conditions of anomalous group-velocity dispersion in fused silica, Quant. Electron. 43, 326–331 (2013),
https://doi.org/10.1070/QE2013v043n04ABEH015110
[78] K.D. Moll and A.L. Gaeta, Role of dispersion in multiple-collapse dynamics, Opt. Lett. 29, 995– 997 (2004),
https://doi.org/10.1364/OL.29.000995
[79] A. Saliminia, S.L. Chin, and R. Vallée, Ultrabroad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 μm, Opt. Express 13, 5731–5738 (2005),
https://doi.org/10.1364/OPEX.13.005731
[80] F. Silva, D.R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal, Nat. Commun. 3, 807 (2012),
https://doi.org/10.1038/ncomms1816
[81] M. Durand, A. Jarnac, A. Houard, Y. Liu, S. Grabielle, N. Forget, A. Durécu, A. Couairon, and A. Mysyrowicz, Selfguided propagation of ultrashort laser pulses in the anomalous dispersion region of transparent solids: a new regime of filamentation, Phys. Rev. Lett. 110, 115003 (2013),
https://doi.org/10.1103/PhysRevLett.110.115003
[82] E.O. Smetanina, V.O. Kompanets, A.E. Dormidonov, S.V. Chekalin, and V.P. Kandidov, Light bullets from near-IR filament in fused silica, Laser Phys. Lett. 10, 105401 (2013),
https://doi.org/10.1088/1612-2011/10/10/105401
[83] D. Majus, G. Tamošauskas, I. Gražulevičiūtė, N. Garejev, A. Lotti, A. Couairon, D. Faccio, and A. Dubietis, Nature of spatiotemporal light bullets in bulk Kerr media, Phys. Rev. Lett. 112, 193901 (2014),
https://doi.org/10.1103/PhysRevLett.112.193901
[84] I. Gražulevičiūtė, R. Šuminas, G. Tamošauskas, A. Couairon, and A. Dubietis, Carrier-envelope phase-stable spatiotemporal light bullets, Opt. Lett. 40, 3719–3722 (2015),
https://doi.org/10.1364/OL.40.003719
[85] S.V. Chekalin, A.E. Dokukina, A.E. Dormidonov, V.O. Kompanets, E.O. Smetanina, and V.P. Kandidov, Light bullets from a femtosecond filament, J. Phys. B 48, 094008 (2015),
https://doi.org/10.1088/0953-4075/48/9/094008
[86] R. Šuminas, G. Tamošauskas, G. Valiulis, and A. Dubietis, Spatiotemporal light bullets and supercontinuum generation in β-BBO crystal with competing quadratic and cubic nonlinearities, Opt. Lett. 41, 2097–2100 (2016),
https://doi.org/10.1364/OL.41.002097
[87] I. Gražulevičiūtė, N. Garejev, D. Majus, V. Jukna, G. Tamošauskas, and A. Dubietis, Filamentation and light bullet formation dynamics in solid-state dielectric media with weak, moderate and strong anomalous group velocity dispersion, J. Opt. 18, 025502 (2016),
https://doi.org/10.1088/2040-8978/18/2/025502
[88] M. Kolesik, E.M. Wright, and J.V. Moloney, Interpretation of the spectrally resolved far field of femtosecond pulses propagating in bulk nonlinear dispersive media, Opt. Express 13, 10729– 10741 (2005),
https://doi.org/10.1364/OPEX.13.010729
[89] D. Faccio, P. Di Trapani, S. Minardi, A. Bramati, F. Bragheri, C. Liberale, V. Degiorgio, A. Dubietis, and A. Matijosius, Far-field spectral characterization of conical emission and filamentation in Kerr media, J. Opt. Soc. Am. B 22, 862–869 (2005),
https://doi.org/10.1364/JOSAB.22.000862
[90] M.A. Porras, A. Dubietis, E. Kučinskas, F. Bragheri, V. Degiorgio, A. Couairon, D. Faccio, and P. Di Trapani, From X- to O-shaped spatiotemporal spectra of light filaments in water, Opt. Lett. 30, 3398–3400 (2005),
https://doi.org/10.1364/OL.30.003398
[91] D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J.V. Moloney, A. Couairon, and P. Di Trapani, Generation and control of extreme blueshifted continuum peaks in optical Kerr media, Phys. Rev. A 78, 033825 (2008),
https://doi.org/10.1103/PhysRevA.78.033825
[92] D. Faccio, M. Clerici, A. Averchi, A. Lotti, O. Jedrkiewicz, A. Dubietis, G. Tamosauskas, A. Couairon, F. Bragheri, D. Papazoglou, S. Tzortzakis, and P. Di Trapani, Few-cycle laser-pulse collapse in Kerr media: The role of group-velocity dispersion and X-wave formation, Phys. Rev. A 78, 033826 (2008),
https://doi.org/10.1103/PhysRevA.78.033826
[93] M. Kolesik, E.M. Wright, and J.V. Moloney, Dynamic nonlinear X waves for femtosecond pulse propagation in water, Phys. Rev. Lett. 92, 253901 (2004),
https://doi.org/10.1103/PhysRevLett.92.253901
[94] A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di Trapani, Nonlinear X-wave formation by femtosecond filamentation in Kerr media, Phys. Rev. E 73, 016608 (2006),
https://doi.org/10.1103/PhysRevE.73.016608
[95] M.A. Porras, A. Parola, and P. Di Trapani, Nonlinear unbalanced O waves: nonsolitary, conical light bullets in nonlinear dissipative media, J. Opt. Soc. Am. B 22, 1406–1413 (2005),
https://doi.org/10.1364/JOSAB.22.001406
[96] A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di Trapani, Light filaments without self-channeling, Phys. Rev. Lett. 92, 253903 (2004),
https://doi.org/10.1103/PhysRevLett.92.253903
[97] A. Dubietis, E. Kučinskas, G. Tamošauskas, E. Gaižauskas, M.A. Porras, and P. Di Trapani, Self-reconstruction of light filaments, Opt. Lett. 29, 2893–2895 (2004),
https://doi.org/10.1364/OL.29.002893
[98] I. Gražulevičiūtė, G. Tamošauskas, V. Jukna, A. Couairon, D. Faccio, and A. Dubietis, Self-reconstructing spatiotemporal light bullets, Opt. Express 22, 30613–30622 (2014),
https://doi.org/10.1364/OE.22.030613
[99] D. Faccio, M.A. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses, Phys. Rev. Lett. 96, 193901 (2006),
https://doi.org/10.1103/PhysRevLett.96.193901
[100] M. Kolesik and J.V. Moloney, Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations, Phys. Rev. E 70, 036604 (2004),
https://doi.org/10.1103/PhysRevE.70.036604
[101] A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, Practitioner's guide to laser pulse propagation models and simulation, Eur. Phys. J. Spec. Top. 199, 5–76 (2011),
https://doi.org/10.1140/epjst/e2011-01503-3
[102] A. Couairon, O.G. Kosareva, N.A. Panov, D.E. Shipilo, V.A. Andreeva, V. Jukna, and F. Nesa, Propagation equation for tight-focusing by a parabolic mirror, Opt. Express 23, 31240–31252 (2015),
https://doi.org/10.1364/OE.23.031240
[103] A.V. Husakou and J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers, Phys. Rev. Lett. 87, 203901 (2001),
https://doi.org/10.1103/PhysRevLett.87.203901
[104] T. Brabec and F. Krausz, Nonlinear optical pulse propagation in the single-cycle regime, Phys. Rev. Lett. 78, 3282–3285 (1997),
https://doi.org/10.1103/PhysRevLett.78.3282
[105] M. Kolesik and J.V. Moloney, Modeling and simulation techniques in extreme nonlinear optics of gaseous and condensed media, Rep. Prog. Phys. 77, 016401 (2014),
https://doi.org/10.1088/0034-4885/77/1/016401
[106] M.J. Weber, Handbook of Optical Materials (CRC Press, London, 2003),
https://www.crcpress.com/Handbook-of-Optical-Materials/Weber/p/book/9780849335129
[107] R. DeSalvo, A.A. Said, D.J. Hagan, E.W. Van Stryland, and M. Sheik-Bahae, Infrared to ultraviolet measurements of two-photon absorption and n2 in wide-bandgap solids, IEEE J. Quantum Electron. 32, 1324–1333 (1996),
https://doi.org/10.1109/3.511545
[108] H.H. Li, Refractive index of alkali halides and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data 5, 329–528 (1976),
https://doi.org/10.1063/1.555536
[109] R. Adair, L.L. Chase, and S.A. Payne, Nonlinear refractive index of optical crystals, Phys. Rev. B 39, 3337–3350 (1989),
https://doi.org/10.1103/PhysRevB.39.3337
[110] H.H. Li, Refractive index of alkali halides and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data 9, 161–289 (1980),
https://doi.org/10.1063/1.555616
[111] A. Major, F. Yoshino, I. Nikolakakos, J.S. Aitchison, and P.W.E. Smith, Dispersion of the nonlinear refractive index in sapphire, Opt. Lett. 29, 602–604 (2004),
https://doi.org/10.1364/OL.29.000602
[112] A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses, Phys. Rev. B 71, 125435 (2005),
https://doi.org/10.1103/PhysRevB.71.125435
[113] D. Milam, Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica, Appl. Opt. 37, 546–550 (1998),
https://doi.org/10.1364/AO.37.000546
[114] I.H. Malitson, Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55, 1205–1209 (1965),
https://doi.org/10.1364/JOSA.55.001205
[115] D.N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science & Business Media, New York, 2005),
http://www.springer.com/us/book/9780387220222
[116] F. Zernike, Refractive indices of ammonium dihydrogen phosphate and potassium dihydrogen phosphate between 2000 Å and 1.5 μm, J. Opt. Soc. Am. 54, 1215–1220 (1964),
https://doi.org/10.1364/JOSA.54.001215
[117] J.V. Coe, A.D. Earhart, M.H. Cohen, G.J. Hoffman, H.W. Sarkas, and K.H. Bowen, Using cluster studies to approach the electronic structure of bulk water: Reassessing the vacuum level, conduction band edge, and band gap of water, J. Chem. Phys. 107, 6023–6031 (1997),
https://doi.org/10.1063/1.474271
[118] E.T.J. Nibbering, M.A. Franco. B.S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, Measurements of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation, Opt. Commun. 119, 479–484 (1995),
https://doi.org/10.1016/0030-4018(95)00394-N
[119] A.G. Van Engen, S.A. Diddams, and T.S. Clement, Dispersion measurements of water with white-light interferometry, Appl. Opt. 37, 5679–5686 (1998),
https://doi.org/10.1364/AO.37.005679
[120] Y. Xu and W.Y. Ching, Electronic structure of yttrium aluminum garnet (Y3Al5O12), Phys. Rev. B 59, 10530–10535 (1999),
https://doi.org/10.1103/PhysRevB.59.10530
[121] D.E. Zelmon, D.L. Small, and R. Page, Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm, Appl. Opt. 37, 4933–4935 (1998),
https://doi.org/10.1364/AO.37.004933
[122] M. Bache, H. Guo, B. Zhou, and X. Zeng, The anisotropic Kerr nonlinear refractive index of the beta-barium borate (β-BaB2O4) nonlinear crystal, Opt. Mater. Express 3, 357–382 (2013),
https://doi.org/10.1364/OME.3.000357
[123] D. Zhang, Y. Kong, and J.Y. Zhang, Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge, Opt. Commun. 184, 485–491 (2000),
https://doi.org/10.1016/S0030-4018(00)00968-8
[124] D.J. Little, M. Ams, and M.J. Withford, Influence of bandgap and polarization on photoionization: guidelines for ultrafast laser inscription, Opt. Mater. Express 1, 670–677 (2011),
https://doi.org/10.1364/OME.1.000670
[125] SCHOTT Optical Glass Data Sheets (2015)
[126] A. Major, I. Nikolakakos, J.S. Aitchison, A.I. Ferguson, N. Langford, and P.W.E. Smith, Characterization of the nonlinear refractive index of the laser crystal Yb:KGd(WO4)2, Appl. Phys. B 77, 433–436 (2003),
https://doi.org/10.1007/s00340-003-1252-1
[127] C.E. Webb and J.D. Jones, Handbook of Laser Technology and Applications: Laser Design and Laser Systems, Vol. 2 (CRC Press, 2004),
https://doi.org/10.1887/0750306076
[128] A.G. Selivanov, I.A. Denisov, N.V. Kuleshov, and K.V. Yumashev, Nonlinear refractive properties of Yb3+ -doped KY(WO4)2 and YVO4 laser crystals, Appl. Phys. B 83, 61–65 (2006),
https://doi.org/10.1007/s00340-005-2098-5
[129] M.C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals, Appl. Phys. B 68, 187–197 (1999),
https://doi.org/10.1007/s003400050605
[130] M.R. Dolgos, A.M. Paraskos, M.W. Stoltzfus, S.C. Yarnell, and P.M. Woodward, The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation, J. Solid State Chem. 182, 1964–1971 (2009),
https://doi.org/10.1016/j.jssc.2009.04.032
[131] N.T. Nguyen, A. Saliminia, W. Liu, S.L. Chin, and R. Valée, Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses, Opt. Lett. 28, 1591–1593 (2003),
https://doi.org/10.1364/OL.28.001591
[132] J.B. Ashcom, R.R. Gattass, C.B. Schaffer, and E. Mazur, Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica, J. Opt. Soc. Am. B 23, 2317–2322 (2006),
https://doi.org/10.1364/JOSAB.23.002317
[133] V. Jukna, J. Galinis, G. Tamošauskas, D. Majus, and A. Dubietis, Infrared extension of femtosecond supercontinuum generated by filamentation in solid-state media, Appl. Phys. B 116, 477–483 (2014),
https://doi.org/10.1007/s00340-013-5723-8
[134] Z.X. Wu, H.B. Jiang, L. Luo, H.C. Guo, H. Yang, and Q.H. Gong, Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica, Opt. Lett. 27, 448–450 (2002),
https://doi.org/10.1364/OL.27.000448
[135] W. Liu, S.L. Chin, O. Kosareva, I.S. Golubtsov, and V.P. Kandidov, Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol), Opt. Commun. 225, 193–209 (2003),
https://doi.org/10.1016/j.optcom.2003.07.024
[136] A.K. Dharmadhikari, J.A. Dharmadhikari, and D. Mathur, Visualization of focusing-refocusing cycles during filamentation in BaF2, Appl. Phys. B 94, 259–263 (2009),
https://doi.org/10.1007/s00340-008-3317-7
[137] M. Mlejnek, E.M. Wright, and J.V. Moloney, Dynamic spatial replenishment of femtosecond pulses propagating in air, Opt. Lett. 23, 382–384 (1998),
https://doi.org/10.1364/OL.23.000382
[138] A. Jarnac, G. Tamošauskas, D. Majus, A. Houard, A. Mysyrowicz, A. Couairon, and A. Dubietis, Whole life cycle of femtosecond ultraviolet filaments in water, Phys. Rev. A 89, 033809 (2014),
https://doi.org/10.1103/PhysRevA.89.033809
[139] A.V. Kuznetsov, V.O. Kompanets, A.E. Dormidonov, S.V. Chekalin, S.A. Shlenov, and V.P. Kandidov, Periodic colour-centre structure formed under filamentation of mid-IR femtosecond laser radiation in a LiF crystal, Quant. Electron. 46, 379–386 (2016),
https://doi.org/10.1070/QEL16038
[140] A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, Multiple filamentation induced by input-beam ellipticity, Opt. Lett. 29, 1126–1128 (2004),
https://doi.org/10.1364/OL.29.001126
[141] D. Majus, V. Jukna, G. Tamošauskas, G. Valiulis, and A. Dubietis, Three-dimensional mapping of multiple filament arrays, Phys. Rev. A 81, 043811 (2010),
https://doi.org/10.1103/PhysRevA.81.043811
[142] L. Bergé, S. Mauger, and S. Skupin, Multifilamentation of powerful optical pulses in silica, Phys. Rev. A 81, 013817 (2010),
https://doi.org/10.1103/PhysRevA.81.013817
[143] C.B. Schaffer, A. Brodeur, and E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses, Meas. Sci. Technol. 12, 1784–1794 (2001),
https://doi.org/10.1088/0957-0233/12/11/305
[144] S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Self-guided propagation of ultrashort IR laser pulses in fused silica, Phys. Rev. Lett. 87, 213902 (2001),
https://doi.org/10.1103/PhysRevLett.87.213902
[145] S. Tzortzakis, D.G. Papazoglou, and I. Zergioti, Long-range filamentary propagation of subpicosecond ultraviolet laser pulses in fused silica, Opt. Lett. 31, 796–798 (2006),
https://doi.org/10.1364/OL.31.000796
[146] C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, Generation and characterization of ultrafast white-light continuum in condensed media, Appl. Opt. 41, 3735–3742 (2002),
https://doi.org/10.1364/AO.41.003735
[147] X.-J. Fang and T. Kobayashi, Evolution of a super-broadened spectrum in a filament generated by an ultrashort intense laser pulse in fused silica, Appl. Phys. B 77, 167–170 (2003),
https://doi.org/10.1007/s00340-003-1176-9
[148] H. Dachraoui, C. Oberer, M. Michelswirth, and U. Heinzmann, Direct time-domain observation of laser pulse filaments in transparent media, Phys. Rev. A 82, 043820 (2010),
https://doi.org/10.1103/PhysRevA.82.043820
[149] L. Zhang, T. Xi, Z. Hao, and J. Lin, Supercontinuum accumulation along a single femtosecond filament in fused silica, J. Phys. D 49, 115201 (2016),
https://doi.org/10.1088/0022-3727/49/11/115201
[150] A.K. Dharmadhikari, F.A. Rajgara, and D. Mathur, Systematic study of highly efficient white-light generation in transparent materials using intense femtosecond pulses, Appl. Phys. B 80, 61–66 (2005),
https://doi.org/10.1007/s00340-004-1682-4
[151] A.K. Dharmadhikari, F.A. Rajgara, and D. Mathur, Depolarization of white light generated by ultrashort laser pulses in optical media, Opt. Lett. 31, 2184–2186 (2006),
https://doi.org/10.1364/OL.31.002184
[152] J. Yang and G. Mu, Multi-dimensional observation of white-light filaments generated by femtosecond laser pulses in condensed medium, Opt. Express 15, 4943–4952 (2007),
https://doi.org/10.1364/OE.15.004943
[153] J. Jiang, Y. Zhong, Y. Zheng, Z. Zeng, X. Ge, and R. Li, Broadening of white-light continuum by filamentation in BK7 glass at its zero-dispersion point, Phys. Lett. A 379, 1929–1933 (2015),
https://doi.org/10.1016/j.physleta.2015.04.020
[154] M.L. Naudeau, R.J. Law, T.S. Luk, T.R. Nelson, and S.M. Cameron, Observation of nonlinear optical phenomena in air and fused silica using a 100 GW, 1.54 μm source, Opt. Express 14, 6194–6200 (2006),
https://doi.org/10.1364/OE.14.006194
[155] D. Faccio, A. Averchi, A. Couairon, A. Dubietis, R. Piskarskas, A. Matijošius, F. Bragheri, M.A. Porras, A. Piskarskas, and P. Di Trapani, Competition between phase-matching and stationarity in Kerr-driven optical pulse filamentation, Phys. Rev. E 74, 047603 (2006),
https://doi.org/10.1103/PhysRevE.74.047603
[156] M.A. Porras, A. Dubietis, A. Matijošius, R. Piskarskas, F. Bragheri, A. Averchi, and P. Di Trapani, Characterization of conical emission of light filaments in media with anomalous dispersion, J. Opt. Soc. Am. B 24, 581–584 (2007),
https://doi.org/10.1364/JOSAB.24.000581
[157] M. Durand, K. Lim, V. Jukna, E. McKee, M. Baudelet, A. Houard, M. Richardson, A. Mysyrowicz, and A. Couairon, Blueshifted continuum peaks from filamentation in the anomalous dispersion regime, Phys. Rev. A 87, 043820 (2013),
https://doi.org/10.1103/PhysRevA.87.043820
[158] E.O. Smetanina, V.O. Kompanets, S.V. Chekalin, A.E. Dormidonov, and V.P. Kandidov, Anti-Stokes wing of femtosecond laser filament supercontinuum in fused silica, Opt. Lett. 38, 16–18 (2013),
https://doi.org/10.1364/OL.38.000016
[159] S.V. Chekalin, V.O. Kompanets, A.E. Dokukina, A.E. Dormidonov, E.O. Smetanina, and V.P. Kandidov, Visible supercontinuum radiation of light bullets in the femtosecond filamentation of IR pulses in fused silica, Quant. Electron. 45, 401–407 (2015),
https://doi.org/10.1070/QE2015v045n05ABEH015773
[160] I. Gražulevičiūtė, R. Šuminas, G. Tamošauskas, A. Couairon, and A. Dubietis, Carrier-envelope phase-stable spatiotemporal light bullets, Opt. Lett. 40, 3719–3722 (2015),
https://doi.org/10.1364/OL.40.003719
[161] J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G. Valiulis, A. Couairon, and A. Dubietis, Ultrabroadband supercontinuum and third-harmonic generation in bulk solids with two optical-cycle carrier-envelope phase-stable pulses at 2 μm, Opt. Express 21, 25210–25220 (2013),
https://doi.org/10.1364/OE.21.025210
[162] J.A. Dharmadhikari, R.A. Deshpande, A. Nath, K. Dota, D. Mathur, and A.K. Dharmadhikari, Effect of group velocity dispersion on supercontinuum generation and filamentation in transparent solids, Appl. Phys. B 117, 471–479 (2014),
https://doi.org/10.1007/s00340-014-5857-3
[163] N. Garejev, G. Tamošauskas, and A. Dubietis, Comparative study of multioctave supercontinuum generation in fused silica, YAG, and LiF in the range of anomalous group velocity dispersion, J. Opt. Soc. Am. B 34, 88–94 (2017),
https://doi.org/10.1364/JOSAB.34.000088
[164] Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y. Fang, G. Zhao, and W. Gao, Filamentation and supercontinuum generation in lanthanum glass, J. Appl. Phys. 121, 023107 (2017),
https://doi.org/10.1063/1.4974005
[165] M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, Five-octave-spanning supercontinuum generation in fluoride glass, Appl. Phys. Express 6, 032503 (2013),
https://doi.org/10.7567/APEX.6.032503
[166] M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, and Y. Ohishi, Ultrabroad supercontinuum generation through filamentation in tellurite glass, Laser Phys. Lett. 10, 036002 (2013),
https://doi.org/10.1088/1612-2011/10/3/036002
[167] P. Béjot, F. Billard, C. Peureux, T. Diard, J. Picot-Clémente, C. Strutynski, P. Mathey, O. Mouawad, O. Faucher, K. Nagasaka, Y. Ohishi, and F. Smektala, Filamentation-induced spectral broadening and pulse shortening of infrared pulses in Tellurite glass, Opt. Commun. 380, 245–249 (2016),
https://doi.org/10.1016/j.optcom.2016.06.003
[168] Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, Mid-infrared supercontinuum generation in chalcogenides, Opt. Mater. Express 3, 1075–1086 (2013),
https://doi.org/10.1364/OME.3.001075
[169] O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses, Appl. Phys. B 121, 433–438 (2015),
https://doi.org/10.1007/s00340-015-6249-z
[170] A.M. Stingel, H. Vanselous, and P.B. Petersen, Covering the vibrational spectrum with microjoule mid-infrared supercontinuum pulses in nonlinear optical applications, J. Opt. Soc. Am. B 34, 1163–1168 (2017),
https://doi.org/10.1364/JOSAB.34.001163
[171] W.L. Smith, P. Liu, and N. Bloembergen, Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser, Phys. Rev. A 15, 2396–2403 (1977),
https://doi.org/10.1103/PhysRevA.15.2396
[172] I. Golub, Optical characteristics of supercontinuum generation, Opt. Lett. 15, 305–307 (1990),
https://doi.org/10.1364/OL.15.000305
[173] G.S. He, G.C. Xu, Y. Cui, and P.N. Prasad, Difference of spectral superbroadening behavior in Kerr-type and non-Kerr-type liquids pumped with ultrashort laser pulses, Appl. Opt. 32, 4507– 4512 (1993),
https://doi.org/10.1364/AO.32.004507
[174] A. Brodeur, F.A. Ilkov, and S.L. Chin, Beam filamentation and the white light continuum divergence, Opt. Commun. 129, 193–198 (1996),
https://doi.org/10.1016/0030-4018(96)00144-7
[175] A. Dubietis, G. Tamošauskas, I. Diomin, and A. Varanavičius, Self-guided propagation of femtosecond light pulses in water, Opt. Lett. 28, 1269–1271 (2003),
https://doi.org/10.1364/OL.28.001269
[176] W. Liu, O. Kosareva, I.S. Golubtsov, A. Iwasaki, A. Becker, V.P. Kandidov, and S.L. Chin, Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water, Appl. Phys. B 75, 595–599 (2002),
https://doi.org/10.1007/s00340-002-1036-z
[177] W. Liu, O. Kosareva, I.S. Golubtsov, A. Iwasaki, A. Becker, V.P. Kandidov, and S.L. Chin, Femtosecond laser pulse filamentation versus optical breakdown in H2O, Appl. Phys. B 76, 215– 229 (2003),
https://doi.org/10.1007/s00340-002-1087-1
[178] V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, W. Liu, A. Becker, N. Aközbek, C.M. Bowden, and S.L. Chin, Selftransformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation), Appl. Phys. B 77, 149–165 (2003),
https://doi.org/10.1007/s00340-003-1214-7
[179] J. Liu, H. Schroeder, S.L. Chin, R. Li, and Z. Xu, Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation, Opt. Express 13, 10248–10259 (2005),
https://doi.org/10.1364/OPEX.13.010248
[180] A.N. Tcypkin, S.E. Putilin, M.V. Melnik, E.A. Makarov, V.G. Bespalov, and S.A. Kozlov, Generation of high-intensity spectral supercontinuum of more than two octaves in a water jet, Appl. Opt. 55, 8390–8394 (2016),
https://doi.org/10.1364/AO.55.008390
[181] P. Vasa, J.A. Dharmadhikari, A.K. Dharmadhikari, R. Sharma, M. Singh, and D. Mathur, Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion, Phys. Rev. A 89, 043834 (2014),
https://doi.org/10.1103/PhysRevA.89.043834
[182] J.A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D. Mathur, and A.K. Dharmadhikari, Femtosecond supercontinuum generation in water in the vicinity of absorption bands, Opt. Lett. 41, 3475–3478 (2016),
https://doi.org/10.1364/OL.41.003475
[183] M. Ziolek, R. Naskrecki, and J. Karolczak, Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy, Opt. Commun. 241, 221– 229 (2004),
https://doi.org/10.1016/j.optcom.2004.06.070
[184] V. Kartazaev and R.R. Alfano, Polarization properties of SC generated in CaF2, Opt. Commun. 281, 463–468 (2008),
https://doi.org/10.1016/j.optcom.2007.09.053
[185] P.J.M. Johnson, V.I. Prokhorenko, and R.J.D. Miller, Stable UV to IR supercontinuum generation in calcium fluoride with conserved circular polarization states, Opt. Express 17, 21488–21496 (2009),
https://doi.org/10.1364/OE.17.021488
[186] P. Tzankov, I. Buchvarov, and T. Fiebig, Broadband optical parametric amplification in the near UV–VIS, Opt. Commun. 203, 107–113 (2002),
https://doi.org/10.1016/S0030-4018(02)01107-0
[187] I. Buchvarov, A. Trifonov, and T. Fiebig, Toward an understanding of white-light generation in cubic media – polarization properties across the entire spectral range, Opt. Lett. 32, 1539–1541 (2007),
https://doi.org/10.1364/OL.32.001539
[188] J. Zeller, J. Jaspara, W. Rudolph, and M. Sheik-Bahae, Spectro-temporal characterization of a femtosecond white-light continuum by transient grating diffraction, Opt. Commun. 185, 133–137 (2000),
https://doi.org/10.1016/S0030-4018(00)00982-2
[189] N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe, New J. Phys. 15, 085016 (2013),
https://doi.org/10.1088/1367-2630/15/8/085016
[190] R. Huber, H. Satzger, W. Zinth, and J. Wachtveitl, Noncollinear optical parametric amplifiers with output parameters improved by the applications of a white light continuum generated in CaF2, Opt. Commun. 194, 443–448 (2001),
https://doi.org/10.1016/S0030-4018(01)01324-4
[191] J. Kohl-Landgraf, J.-E. Nimsch, and J. Wachtveitl, LiF, an underestimated supercontinuum source in femtosecond transient absorption spectroscopy, Opt. Express 21, 17060–17065 (2013),
https://doi.org/10.1364/OE.21.017060
[192] A.K. Dharmadhikari, F.A. Rajgara, N.C.S. Reddy, A.S. Sandhu, and D. Mathur, Highly efficient white light generation from barium fluoride, Opt. Express 12, 695–700 (2004),
https://doi.org/10.1364/OPEX.12.000695
[193] A.K. Dharmadhikari, K. Alti, J.A. Dharmadhikari, and D. Mathur, Control of the onset of filamentation in condensed media, Phys. Rev. A 76, 033811 (2007),
https://doi.org/10.1103/PhysRevA.76.033811
[194] A.K. Dharmadhikari, F.A. Rajgara, and D. Mathur, Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride, Appl. Phys. B 82, 575–583 (2006),
https://doi.org/10.1007/s00340-005-2121-x
[195] H. Liang, P. Krogen, R. Grynko, O. Novak, C.-L. Chang, G.J. Stein, D. Weerawarne, B. Shim, F.X. Kärtner, and K.-H. Hong, Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics, Opt. Lett. 40, 1069–1072 (2015),
https://doi.org/10.1364/OL.40.001069
[196] A.E. Dormidonov, V.O. Kompanets, S.V. Chekalin, and V.P. Kandidov, Giantically blue-shifted visible light in femtosecond mid-IR filament in fluorides, Opt. Express 23, 29202–29210 (2015),
https://doi.org/10.1364/OE.23.029202
[197] S.V. Chekalin, V.O. Kompanets, A.E. Dormidonov, E.D. Zaloznaya, and V.P. Kandidov, Supercontinuum spectrum upon filamentation of laser pulses under conditions of strong and weak anomalous group velocity dispersion in transparent dielectrics, Quantum Electron. 47, 252–258 (2017),
https://doi.org/10.1070/QEL16289
[198] A.E. Dormidonov, V.O. Kompanets, S.V. Chekalin, and V.P. Kandidov, Dispersion of the anti-stokes band in the spectrum of a light bullet of a femtosecond filament, JETP Lett. 104, 175–179 (2016),
https://doi.org/10.1134/S002136401615008X
[199] S.V. Chekalin, V.O. Kompanets, A.E. Dormidonov, and V.P. Kandidov, Influence of induced colour centres on the frequency – angular spectrum of a light bullet of mid-IR radiation in lithium fluoride, Quant. Electron. 47, 259–265 (2017),
https://doi.org/10.1070/QEL16285
[200] A. Marcinkevičiūtė, N. Garejev, R. Šuminas, G. Tamošauskas, and A. Dubietis, A compact, self-compression-based sub-3 optical cycle source in the 3–4 μm spectral range, J. Opt. 19, 105505 (2017),
https://doi.org/10.1088/2040-8986/aa873b
[201] M.K. Reed, M.K. Steiner-Shepard, and D.K. Negus, Widely tunable femtosecond optical parametric amplifier at 250 kHz with a Ti:sapphire regenerative amplifier, Opt. Lett. 19, 1855–1857 (1994),
https://doi.org/10.1364/OL.19.001855
[202] M.K. Reed, M.K. Steiner-Shepard, M.S. Armas, and D.K. Negus, Microjoule-energy ultrafast optical parametric amplifiers, J. Opt. Soc. Am. B 12, 2229–2236 (1995),
https://doi.org/10.1364/JOSAB.12.002229
[203] C. Manzoni and G. Cerullo, Design criteria for ultrafast optical parametric amplifiers, J. Opt. 18, 103501 (2016),
https://doi.org/10.1088/2040-8978/18/10/103501
[204] M. Bradler and E. Riedle, Sub-20 fs μJ-energy pulses tunable down to the near-UV from a 1 MHz Yb-fiber laser system, Opt. Lett. 39, 2588–2591 (2014),
https://doi.org/10.1364/OL.39.002588
[205] T. Imran and G. Figueira, Intensity-phase characterization of white-light continuum generated in sapphire by 280 fs laser pulses at 1053 nm, J. Opt. 14, 035201 (2012),
https://doi.org/10.1088/2040-8978/14/3/035201
[206] R. Budriūnas, T. Stanislauskas, and A. Varanavičius, Passively CEP-stabilized frontend for few cycle terawatt OPCPA system, J. Opt. 17, 094008 (2015),
https://doi.org/10.1088/2040-8978/17/9/094008
[207] H. Fattahi, H. Wang, A. Alismail, G. Arisholm, V. Pervak, A.M. Azzeer, and F. Krausz, Near-PHz-bandwidth, phasestable continua generated from a Yb:YAG thin-disk amplifier, Opt. Express 24, 24337–24346 (2016),
https://doi.org/10.1364/OE.24.024337
[208] M. Bradler, P. Baum, and E. Riedle, Continuum generation in laser host materials towards table-top OPCPA, in: Proceedings of International Conference on Ultrafast Phenomena, paper ME25 (2010),
https://doi.org/10.1364/UP.2010.ME25
[209] M. Bradler and E. Riedle, Continuum generation in laser host materials with pump pulse durations covering the entire femtosecond regime, in: Advances in Optical Materials, OSA Technical Digest (CD), paper AMD4 (2011),
https://doi.org/10.1364/ASSP.2011.AMD4
[210] A.-L. Calendron, H. Çankaya, G. Cirmi, and F.X. Kärtner, White-light generation with sub-ps pulses, Opt. Express 23, 13866–13879 (2015),
https://doi.org/10.1364/OE.23.013866
[211] I. Gražulevičiūtė, M. Skeivytė, E. Keblytė, J. Galinis, G. Tamošauskas, and A. Dubietis, Supercontinuum generation in YAG and sapphire with picosecond laser pulses, Lith. J. Phys. 55, 110–116 (2015),
https://doi.org/10.3952/physics.v55i2.3101
[212] J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses, Phys. Rev. A 92, 033857 (2015),
https://doi.org/10.1103/PhysRevA.92.033857
[213] L. Kasmi, D. Kreier, M. Bradler, E. Riedle, and P. Baum, Femtosecond single-electron pulses generated by two-photon photoemission close to the work function, New J. Phys. 17, 033008 (2015),
https://doi.org/10.1088/1367-2630/17/3/033008
[214] M. Emons, A. Steinmann, T. Binhammer, G. Palmer, M. Schultze, and U. Morgner, Sub-10-fs pulses from a MHz-NOPA with pulse energies of 0.4 μJ, Opt. Express 18, 1191–1196 (2010),
https://doi.org/10.1364/OE.18.001191
[215] R. Riedel, A. Stephanides, M.J. Prandolini, B. Gronloh, B. Jungbluth, T. Mans, and F. Tavella, Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers, Opt. Lett. 39, 1422–1424 (2014),
https://doi.org/10.1364/OL.39.001422
[216] N. Thiré, R. Maksimenka, B. Kiss, C. Ferchaud, P. Bizouard, E. Cormier, K. Osvay, and N. Forget, 4-W, 100-kHz, few-cycle mid-infrared source with sub-100-mrad carrier-envelope phase noise, Opt. Express 25, 1505–1514 (2017),
https://doi.org/10.1364/OE.25.001505
[217] L. Indra, F. Batysta, P. Hříbek, J. Novák, Z. Hubka, J.T. Green, R. Antipenkov, R. Boge, J.A. Naylon, P. Bakule, and B. Rus, Picosecond pulse generated supercontinuum as a stable seed for OPCPA, Opt. Lett. 42, 843–846 (2017),
https://doi.org/10.1364/OL.42.000843
[218] P. Rigaud, A. van de Walle, M. Hanna, N. Forget, F. Guichard, Y. Zaouter, K. Guesmi, F. Druon, and P. Georges, Supercontinuum-seeded few-cycle mid-infrared OPCPA system, Opt. Express 24, 26494–26502 (2016),
https://doi.org/10.1364/OE.24.026494
[219] G.M. Archipovaite, S. Petit, J.-C. Delagnes, and E. Cormier, 100 kHz Yb-fiber laser pumped 3 μm optical parametric amplifier for probing solid-state systems in the strong field regime, Opt. Lett. 42, 891–894 (2017),
https://doi.org/10.1364/OL.42.000891
[220] T. Kanai, P. Malevich, S.S. Kangaparambil, K. Ishida, M. Mizui, K. Yamanouchi, H. Hoogland, R. Holzwarth, A. Pugzlys, and A. Baltuska, Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier, Opt. Lett. 42, 683–686 (2017),
https://doi.org/10.1364/OL.42.000683
[221] P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier, Opt. Lett. 41, 930–933 (2017),
https://doi.org/10.1364/OL.41.000930
[222] W. Ryba-Romanowski, B. Macalik, A. Strzȩp, R. Lisiecki, P. Solarz, and R.M. Kowalski, Spectral transformation of infrared ultrashort pulses in laser crystals, Opt. Mater. 36, 1745–1748 (2014),
https://doi.org/10.1016/j.optmat.2014.03.017
[223] R.S.S. Kumar, K.L.N. Deepak, and D.N. Rao, Control of the polarization properties of the supercontinuum generation in a noncentrosymmetric crystal, Opt. Lett. 33, 1198–1200 (2008),
https://doi.org/10.1364/OL.33.001198
[224] R.S.S. Kumar, K.L.N. Deepak, and D.N. Rao, Depolarization properties of the femtosecond supercontinuum generated in condensed media, Phys. Rev. A 78, 043818 (2008),
https://doi.org/10.1103/PhysRevA.78.043818
[225] J. Yu, H. Jiang, H. Yang, and Q. Gong, Depolarization of white light generated by femtosecond laser pulse in KDP crystals, J. Opt. Soc. Am. B 28, 1566–1570 (2011),
https://doi.org/10.1364/JOSAB.28.001566
[226] J. Rolle, L. Bergé, G. Duchateau, and S. Skupin, Filamentation of ultrashort laser pulses in silica glass and KDP crystals: A comparative study, Phys. Rev. A 90, 023834 (2014),
https://doi.org/10.1103/PhysRevA.90.023834
[227] Y. Wang, H. Ni, W. Zhan, J. Yuan, and R. Wang, Supercontinuum and THz generation from Ni implanted LiNbO3 under 800 nm laser excitation, Opt. Commun. 291, 334–336 (2013),
https://doi.org/10.1016/j.optcom.2012.11.007
[228] P. Vasa, K. Dota, M. Singh, D. Kushavah, B.P. Singh, and D. Mathur, Power- and polarization-dependent supercontinuum generation in α-BaB2O4 crystals by intense, near-infrared, femtosecond laser pulses, Phys. Rev. A 91, 053837 (2015),
https://doi.org/10.1103/PhysRevA.91.053837
[229] N.K.M.N. Srinivas, S.S. Harsha, and D.N. Rao, Femtosecond supercontinuum generation in a quadratic nonlinear medium (KDP), Opt. Express 13, 3224–3229 (2005),
https://doi.org/10.1364/OPEX.13.003224
[230] R.S.S. Kumar, S.S. Harsha, and D.N. Rao, Broadband supercontinuum generation in a single potassium di-hydrogen phosphate (KDP) crystal achieved in tandem with sum frequency generation, Appl. Phys. B 86, 615–621 (2007),
https://doi.org/10.1007/s00340-006-2519-0
[231] L. Wang, Y.X. Fan, H. Zhu, Z.D. Yan, H. Zeng, H.-T. Wang, S.N. Zhu, and Z.L. Wang, Broadband colored-crescent generation in a single β-barium-borate crystal by intense femtosecond pulses, Phys. Rev. A 84, 063831 (2011),
https://doi.org/10.1103/PhysRevA.84.063831
[232] S.A. Ali, P.B. Bisht, A. Nautiyal, V. Shukla, K.S. Bindra, and S.M. Oak, Conical emission in β-barium borate under femtosecond pumping with phase matching angles away from second harmonic generation, J. Opt. Soc. Am. B 27, 1751–1756 (2010),
https://doi.org/10.1364/JOSAB.27.001751
[233] G.I. Stegeman, D.J. Hagan, and L. Torner, χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons, Opt. Quant. Electron. 28, 1691–1740 (1996),
https://doi.org/10.1007/BF00698538
[234] M. Conforti, F. Baronio, and C. De Angelis, Modeling of ultrabroadband and single-cycle phenomena in anisotropic quadratic crystals, J. Opt. Soc. Am. B 28, 1231–1237 (2011),
https://doi.org/10.1364/JOSAB.28.001231
[235] M. Conforti and F. Baronio, Extreme high-intensity and ultrabroadband interactions in anisotropic β-BaB2O4 crystals, J. Opt. Soc. Am. B 30, 1041–1047 (2013),
https://doi.org/10.1364/JOSAB.30.001041
[236] B.B. Zhou, A. Chong, F.W. Wise, and M. Bache, Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions, Phys. Rev. Lett. 109, 043902 (2012),
https://doi.org/10.1103/PhysRevLett.109.043902
[237] M. Bache, H. Guo, and B. Zhou, Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals, Opt. Mater. Express 3, 1647–1657 (2013),
https://doi.org/10.1364/OME.3.001647
[238] B. Zhou, H. Guo, and M. Bache, Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal, Opt. Express. 23, 6924–6936 (2015),
https://doi.org/10.1364/OE.23.006924
[239] B. Zhou and M. Bache, Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal, Opt. Lett. 40, 4257– 4260 (2015),
https://doi.org/10.1364/OL.40.004257
[240] B. Zhou and M. Bache, Multiple-octave spanning mid-IR supercontinuum generation in bulk quadratic nonlinear crystals, APL Photon. 1, 050802 (2016),
https://doi.org/10.1063/1.4953177
[241] K. Krupa, A. Labruyère, A. Tonello, B.M. Shalaby, V. Couderc, F. Baronio, and A.B. Aceves, Polychromatic filament in quadratic media: spatial and spectral shaping of light in crystals, Optica 2, 1058–1064 (2015),
https://doi.org/10.1364/OPTICA.2.001058
[242] R. Šuminas, G. Tamošauskas, V. Jukna, A. Couairon, and A. Dubietis, Second-order cascading-assisted filamentation and controllable supercontinuum generation in birefringent crystals, Opt. Express 25, 6746–6756 (2017),
https://doi.org/10.1364/OE.25.006746
[243] C. Vicario, B. Monoszlai, G. Arisholm, and C.P. Hauri, Generation of 1.5-octave intense infrared pulses by nonlinear interactions in DAST crystal, J. Opt. 17, 094005 (2015),
https://doi.org/10.1088/2040-8978/17/9/094005
[244] A. Kessel, S.A. Trushin, N. Karpowicz, C. Skrobol, S. Klingebiel, C. Wandt, and S. Karsch, Generation of multi-octave spanning high-energy pulses by cascaded nonlinear processes in BBO, Opt. Express 24, 5628–5637 (2016),
https://doi.org/10.1364/OE.24.005628
[245] A.H. Chin, O.G. Calderón, and J. Kono, Extreme midinfrared nonlinear optics in semiconductors, Phys. Rev. Lett. 86, 3292–3295 (2001),
https://doi.org/10.1103/PhysRevLett.86.3292
[246] P.B. Corkum, P.P. Ho, R.R. Alfano, and J.T. Manassah, Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors, Opt. Lett. 10, 624–626 (1985),
https://doi.org/10.1364/OL.10.000624
[247] J.J. Pigeon, S.YA. Tochitsky, C. Gong, and C. Joshi, Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO2 laser pulses, Opt. Lett. 39, 3246–3249 (2014),
https://doi.org/10.1364/OL.39.003246
[248] S. Ashihara and Y. Kawahara, Spectral broadening of mid-infrared femtosecond pulses in GaAs, Opt. Lett. 34, 3839–3841 (2009),
https://doi.org/10.1364/OL.34.003839
[249] A.A. Lanin, A.A. Voronin, E.A. Stepanov, A.B. Fedotov, and A.M. Zheltikov, Frequency-tunable sub-two-cycle 60-MW-peak-power free-space waveforms in the mid-infrared, Opt. Lett. 39, 6430–6433 (2014),
https://doi.org/10.1364/OL.39.006430
[250] A.A. Lanin, A.A. Voronin, E.A. Stepanov, A.B. Fedotov, and A.M. Zheltikov, Multioctave, 3–18 μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid, Opt. Lett. 40, 974–977 (2015),
https://doi.org/10.1364/OL.40.000974
[251] M. Durand, A. Houard, K. Lim, A. Durécu, O. Vasseur, and M. Richardson, Study of filamentation threshold in zinc selenide, Opt. Express 22, 5852–5858 (2014),
https://doi.org/10.1364/OE.22.005852
[252] O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy, Opt. Mater. 60, 355– 358 (2016),
https://doi.org/10.1016/j.optmat.2016.08.009
[253] R. Šuminas, G. Tamošauskas, G. Valiulis, V. Jukna, A. Couairon, and A. Dubietis, Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe, Appl. Phys. Lett. 110, 241106 (2017),
https://doi.org/10.1063/1.4986440
[254] M. Baudrier-Raybaut, R. Häıdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials, Nature 432, 374–376 (2004),
https://doi.org/10.1038/nature03027
[255] A.S. Sandhu, S. Banerjee, and D. Goswami, Suppression of supercontinuum generation with circularly polarized light, Opt. Commun. 181, 101–107 (2000),
https://doi.org/10.1016/S0030-4018(00)00752-5
[256] A. Srivastava and A. Goswami, Control of supercontinuum generation with polarization of incident laser pulses, Appl. Phys. B 77, 325–328 (2003),
https://doi.org/10.1007/s00340-003-1243-2
[257] D. Schumacher, Controlling continuum generation, Opt. Lett. 27, 451–453 (2002),
https://doi.org/10.1364/OL.27.000451
[258] J.A. Dharmadhikari, A.K. Dharmadhikari, K. Dota, and D. Mathur, Influencing supercontinuum generation by phase distorting an ultrashort laser pulse, Opt. Lett. 40, 241–243 (2015),
https://doi.org/10.1364/OL.40.000241
[259] J.V. Thompson, P.A. Zhokhov, M.M. Springer, A.J. Traverso, V.V. Yakovlev, A.M. Zheltikov, A.V. Sokolov, and M.O. Scully, Amplitude concentration in a phase-modulated spectrum due to femtosecond filamentation, Sci. Rep. 7, 43367 (2017),
https://doi.org/10.1038/srep43367
[260] V. Kartazaev and R.R. Alfano, Supercontinuum generated in calcite with chirped femtosecond pulses, Opt. Lett. 32, 3293–3295 (2007),
https://doi.org/10.1364/OL.32.003293
[261] K. Wang, L. Qian, H. Luo, P. Yuan, and H. Zhu, Ultrabroad supercontinuum generation by femtosecond dual-wavelength pumping in sapphire, Opt. Express 14, 6366–6371 (2006),
https://doi.org/10.1364/OE.14.006366
[262] A.A. Kolomenskii, J. Strohaber, N. Kaya, G. Kaya, A.V. Sokolov, and H.A. Schuessler, White-light generation control with crossing beams of femtosecond laser pulses, Opt. Express 24, 282–293 (2016),
https://doi.org/10.1364/OE.24.000282
[263] K. Stelmaszczyk, P. Rohwetter, Y. Petit, M. Fechner, J. Kasparian, J.-P. Wolf, and L. Wöste, White-light symmetrization by the interaction of multifilamenting beams, Phys. Rev. A 79, 053856 (2009),
https://doi.org/10.1103/PhysRevA.79.053856
[264] C. Romero, R. Borrego-Varillas, A. Camino, G. Mínguez-Vega, O. Mendoza-Yero, J. Hernández-Toro, and J. R. Vázquez de Aldana, Diffractive optics for spectral control of the supercontinuum generated in sapphire with femtosecond pulses, Opt. Express 19, 4977–4984 (2011),
https://doi.org/10.1364/OE.19.004977
[265] R. Borrego-Varillas, C. Romero, O. Mendoza-Yero, G. Mínguez-Vega, I. Gallardo, and J. R. Vázquez de Aldana, Femtosecond filamentation in sapphire with diffractive lenses, J. Opt. Soc. Am. B 30, 2059–2065 (2013),
https://doi.org/10.1364/JOSAB.30.002059
[266] N. Kaya, J. Strohaber, A.A. Kolomenskii, G. Kaya, H. Schroeder, and H.A. Schuessler, White-light generation using spatially-structured beams of femtosecond radiation, Opt. Express 20, 13337–13346 (2012),
https://doi.org/10.1364/OE.20.013337
[267] R. Borrego-Varillas, J. Perez-Vizcaino, O. Mendoza-Yero, G. Minguez-Vega, J.R.V. de Aldana, and J. Lancis, Controlled multibeam supercontinuum generation with a spatial light modulator, IEEE Photon. Technol. Lett. 26, 1661–1664 (2014),
https://doi.org/10.1109/LPT.2014.2330362
[268] Y. Zhong, H. Diao, Z. Zeng, Y. Zheng, X. Ge, R. Li, and Z. Xu, CEP-controlled supercontinuum generation during filamentation with mid-infrared laser pulse, Opt. Express 22, 29170–29178 (2014),
https://doi.org/10.1364/OE.22.029170
[269] T. Jimbo, V.L. Caplan, Q.X. Li, Q.Z. Wang, P.P. Ho, and R.R. Alfano, Enhancement of ultrafast supercontinuum generation in water by the addition of Zn2+ and K+ cations, Opt. Lett. 12, 477–479 (1977),
https://doi.org/10.1364/OL.12.000477
[270] C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water, Appl. Phys. Lett. 90, 181119 (2007),
https://doi.org/10.1063/1.2736212
[271] P. Vasa, M. Singh, R. Bernard, A.K. Dharmadhikari, J.A. Dharmadhikari, and D. Mathur, Supercontinuum generation in water doped with gold nanoparticles, Appl. Phys. Lett. 103, 111109 (2013),
https://doi.org/10.1063/1.4820910
[272] R. Driben, A. Husakou, and J. Herrmann, Supercontinuum generation in aqueous colloids containing silver nanoparticles, Opt. Lett. 34, 2132–2134 (2009),
https://doi.org/10.1364/OL.34.002132
[273] Y.N. Kulchin, S.S. Golik, D.Y. Proschenko, A.A. Chekhlenok, I.V. Postnova, A.Y. Mayor, and Y.A. Shchipunov, Supercontinuum generation and filamentation of ultrashort laser pulses in hybrid silicate nanocomposite materials on the basis of polysaccharides and hyperbranched polyglycidols, Quant. Electron. 43, 370–373 (2013),
https://doi.org/10.1070/QE2013v043n04ABEH015116
[274] L. Wang, Y.-X. Fan, Z.-D. Yan, H.-T. Wang, and Z.-L. Wang, Flat-plateau supercontinuum generation in liquid absorptive medium by femtosecond filamentation, Opt. Lett. 35, 2925–2927 (2010),
https://doi.org/10.1364/OL.35.002925
[275] C. Santhosh, A.K. Dharmadhikari, J.A. Dharmadhikari, K. Alti, and D. Mathur, Supercontinuum generation in macromolecular media, Appl. Phys. B 99, 427–432 (2010),
https://doi.org/10.1007/s00340-010-3903-3
[276] D. Paipulas, A. Balskienė, and V. Sirutkaitis, Experimental study of filamentation and supercontinuum generation in laser-modified fused silica, Lith. J. Phys. 52, 327–333 (2012),
https://doi.org/10.3952/physics.v52i4.2571
[277] C. Rolland and P.B. Corkum, Compression of high-power optical pulses, J. Opt. Soc. Am. B 5, 641–647 (1988),
https://doi.org/10.1364/JOSAB.5.000641
[278] E. Mével, O. Tcherbakoff, F. Salin, and E. Constant, Extracavity compression technique for high-energy femtosecond pulses, J. Opt. Soc. Am. B 20, 105–108 (2003),
https://doi.org/10.1364/JOSAB.20.000105
[279] C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.-C. Hsu, and A. H. Kung, Generation of intense supercontinuum in condensed media, Optica 1, 400–406 (2014),
https://doi.org/10.1364/OPTICA.1.000400
[280] Y.-C. Cheng, C.-H. Lu, Y.-Y. Lin, and A.H. Kung, Supercontinuum generation in a multi-plate medium, Opt. Express 24, 7224–7231 (2016),
https://doi.org/10.1364/OE.24.007224
[281] M. Seidel, G. Arisholm, J. Brons, V. Pervak, and O. Pronin, All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses, Opt. Express 24, 9412–9428 (2016),
https://doi.org/10.1364/OE.24.009412
[282] P. He, Y. Liu, K. Zhao, H. Teng, X. He, P. Huang, H. Huang, S. Zhong, Y. Jiang, S. Fang, X. Hou, and Z. Wei, High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level, Opt. Lett. 42, 474–477 (2017),
https://doi.org/10.1364/OL.42.000474
[283] R. Budriūnas, D. Kučinskas, and A. Varanavičius, High-energy continuum generation in an array of thin plates pumped by tunable femtosecond IR pulses, Appl. Phys. B 123, 212 (2017),
https://doi.org/10.1007/s00340-017-6785-9
[284] A.A. Voronin, A.M. Zheltikov, T. Ditmire, B. Rus, and G. Korn, Subexawatt few-cycle light wave generation via multipetawatt pulse compression, Opt. Commun. 291, 299–303 (2013),
https://doi.org/10.1016/j.optcom.2012.10.057
[285] M. Hemmer, M. Baudisch, A. Thai, A. Couairon, and J. Biegert, Self-compression to sub-3-cycle duration of mid-infrared optical pulses in dielectrics, Opt. Express 21, 28095–28102 (2013),
https://doi.org/10.1364/OE.21.028095
[286] M. Baudisch, H. Pires, H. Ishizuki, T. Taira, M. Hemmer, and J. Biegert, Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz, J. Opt. 17, 094002 (2015),
https://doi.org/10.1088/2040-8978/17/9/094002
[287] B.G. Bravy, V.M. Gordienko, and V.T. Platonenko, Kerr effect-assisted self-compression in dielectric to single-cycle pulse width and to terawatt power level in mid-IR, Opt. Commun. 344, 7–11 (2015),
https://doi.org/10.1016/j.optcom.2015.01.036
[288] B.G. Bravy, V.M. Gordienko, and V.T. Platonenko, Self-compression of terawatt level picosecond 10 μm laser pulses in NaCl, Laser Phys. Lett. 11, 065401 (2014),
https://doi.org/10.1088/1612-2011/11/6/065401
[289] W. Li, Y. Li, Y. Xu, X. Guo, J. Lu, P. Wang, and Y. Leng, Design and simulation of a single-cycle source tunable from 2 to 10 micrometers, Opt. Express 25, 7101–7111 (2017),
https://doi.org/10.1364/OE.25.007101
[290] A.A. Voronin and A.M. Zheltikov, Asymptotically one-dimensional dynamics of high-peak-power ultrashort laser pulses, J. Opt. 18, 115501 (2016),
https://doi.org/10.1088/2040-8978/18/11/115501
[291] A.A. Voronin and A.M. Zheltikov, Pulse self-compression to single-cycle pulse widths a few decades above the selffocusing threshold, Phys. Rev. A 94, 023824 (2016),
https://doi.org/10.1103/PhysRevA.94.023824
[292] V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A.M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk, Nat. Commun. 7, 12877 (2016),
https://doi.org/10.1038/ncomms12877
[293] N. Garejev, V. Jukna, G. Tamošauskas, M. Veličkė, R. Šuminas, A. Couairon, and A. Dubietis, Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium, Opt. Express 24, 17060–17068 (2016),
https://doi.org/10.1364/OE.24.017060
[294] E.A. Stepanov, A.A. Lanin, A.A. Voronin, A.B. Fedotov, and A.M. Zheltikov, Solid-state source of subcycle pulses in the midinfrared, Phys. Rev. Lett. 117, 043901 (2016),
https://doi.org/10.1103/PhysRevLett.117.043901
[295] T.M. Kardaś, B. Ratajska-Gadomska, W. Gadomski, A. Lapini, and R. Righini, The role of stimulated Raman scattering in supercontinuum generation in bulk diamond, Opt. Express 21, 24201–24209 (2013),
https://doi.org/10.1364/OE.21.024201
[296] S.A. Frolov, V.I. Trunov, V.E. Leshchenko, and E.V. Pestryakov, Multi-octave supercontinuum generation with IR radiation filamentation in transparent solid-state media, Appl. Phys. B 122, 124 (2016),
https://doi.org/10.1007/s00340-016-6398-8
[297] E. Mareev, V. Bagratashvili, N. Minaev, F. Potemkin, and V. Gordienko, Generation of an adjustable multi-octave supercontinuum under near-IR filamentation in gaseous, supercritical, and liquid carbon dioxide, Opt. Lett. 41, 5760–5763 (2016),
https://doi.org/10.1364/OL.41.005760
[298] A. Dubietis, P. Polesana, G. Valiulis, A. Stabinis, P. Di Trapani, and A. Piskarskas, Axial emission and spectral broadening in self-focusing of femtosecond Bessel beams, Opt. Express 15, 4168–4175 (2007),
https://doi.org/10.1364/OE.15.004168
[299] X. Sun, H. Gao, B. Zeng, S. Xu, W. Liu, Y. Cheng, Z. Xu, and G. Mu, Multiple filamentation generated by focusing femtosecond laser with axicon, Opt. Lett. 37, 857–859 (2012),
https://doi.org/10.1364/OL.37.000857
[300] K. Dota, A. Pathak, J.A. Dharmadhikari, D. Mathur, and A.K. Dharmadhikari, Femtosecond laser filamentation in condensed media with Bessel beams, Phys. Rev. A 86, 023808 (2012),
https://doi.org/10.1103/PhysRevA.86.023808
[301] K. Dota, J.A. Dharmadhikari, D. Mathur, and A.K. Dharmadhikari, Supercontinuum generation in barium fluoride using Bessel beams, Chin. J. Phys. 52, 431–439 (2014),
[PDF]
[302] P. Polynkin, M. Kolesik, and J. Moloney, Filamentation of femtosecond laser Airy beams in water, Phys. Rev. Lett. 103, 123902 (2009),
https://doi.org/10.1103/PhysRevLett.103.123902
[303] C. Ament, M. Kolesik, J.V. Moloney, and P. Polynkin, Self-focusing dynamics of ultraintense accelerating Airy waveforms in water, Phys. Rev. A 86, 043842 (2012),
https://doi.org/10.1103/PhysRevA.86.043842
[304] C. Gong, Z. Li, L.Q. Hua, W. Quan, and X.J. Liu, Angle-resolved conical emission spectra from filamentation in a solid with an Airy pattern and a Gaussian laser beam, Opt. Lett. 41, 4305– 4308 (2016),
https://doi.org/10.1364/OL.41.004305
[305] D.N. Neshev, A. Dreischuh, G. Maleshkov, M. Samoc, and Y.S. Kivshar, Supercontinuum generation with optical vortices, Opt. Express 18, 18368–18373 (2010),
https://doi.org/10.1364/OE.18.018368
[306] G. Maleshkov, D.N. Neshev, E. Petrova, and A. Dreischuh, Filamentation and supercontinuum generation by singular beams in self-focusing nonlinear media, J. Opt. 13, 064015 (2011),
https://doi.org/10.1088/2040-8978/13/6/064015
[307] H. Fattahi, H.G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C.Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, et al., Third-generation femtosecond technology, Optica 1, 45–63 (2014),
https://doi.org/10.1364/OPTICA.1.000045