References
/
Nuorodos
[1] J.M. Dudley, G. Genty, and S. Coen, Supercontinuum
generation in photonic crystal fiber, Rev. Mod. Phys.
78,
1135–1184 (2006),
https://doi.org/10.1103/RevModPhys.78.1135
[2] J.H.V. Price, X. Feng, A.M. Heidt, G. Brambilla, P. Horak,
F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M.
Ibsen, W.H. Loh, H.N. Rutt, and D.J. Richardson, Supercontinuum
generation in non-silica fibers, Opt. Fiber Technol.
18,
327–344 (2012),
https://doi.org/10.1016/j.yofte.2012.07.013
[3] P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wang, A.K.
George, C.M.B. Cordeiro, J.C. Knight, and F.G. Omenetto, Over
4000 nm bandwidth of mid-IR supercontinuum generation in
sub-centimeter segments of highly nonlinear tellurite PCFs, Opt.
Express
16, 7161–7168 (2008),
https://doi.org/10.1364/OE.16.007161
[4] C.R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J.
Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D.
Furniss, A. Seddon, and O. Bang, Mid-infrared supercontinuum
covering the 1.4–13.3 μm molecular fingerprint region using
ultra-high NA chalcogenide step-index fibre, Nature Photon.
8,
830–834 (2014),
https://doi.org/10.1038/nphoton.2014.213
[5] D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A.
Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and
A. Baltuška, White light generation over three octaves by
femtosecond filament at 3.9 μm in argon, Opt. Lett.
37,
3456– 3458 (2012),
https://doi.org/10.1364/OL.37.003456
[6] A.V. Mitrofanov, A.A. Voronin, S.I. Mitryukovskiy, D.A.
Sidorov-Biryukov, A. Pugžlys, G. Andriukaitis, T. Flöry, E.A.
Stepanov, A.B. Fedotov, A. Baltuška, and A.M. Zheltikov,
Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by
third-to-fifteenth odd harmonics, Opt. Lett.
40,
2068–2071 (2015),
https://doi.org/10.1364/OL.40.002068
[7] R.R. Alfano and L. Shapiro, Emission in the region 4000 to
7000 Å via four photon coupling in glass, Phys. Rev. Lett.
24,
584–587 (1970),
https://doi.org/10.1103/PhysRevLett.24.584
[8] R.R. Alfano and L. Shapiro, Observation of self-phase
modulation and small-scale filaments in crystals and glasses,
Phys. Rev. Lett.
24, 592–594 (1970),
https://doi.org/10.1103/PhysRevLett.24.592
[9]
The Supercontinuum Laser Source, ed. R.R. Alfano
(Springer, 2006),
https://doi.org/10.1007/b106776
[10] R.L. Fork, C.V. Shank, C. Hirlimann, R. Yen, and W.J.
Tomlinson, Femtosecond white-light continuum pulses, Opt. Lett.
8, 1–3 (1983),
https://doi.org/10.1364/OL.8.000001
[11] M. Witmann and A. Penzkofer, Spectral super-broadening of
femtosecond laser pulses, Opt. Commun.
126, 308–317
(1996),
https://doi.org/10.1016/0030-4018(95)00758-X
[12] D.E. Spence, P.N. Kean, and W. Sibbett, 60-fsec pulse
generation from a self-mode-locked Ti:sapphire laser, Opt. Lett.
16, 42–44 (1991),
https://doi.org/10.1364/OL.16.000042
[13] T.B. Norris, Femtosecond pulse amplification at 250 kHz
with a Ti:sapphire regenerative amplifier and application to
continuum generation, Opt. Lett.
17, 1009–1011 (1992),
https://doi.org/10.1364/OL.17.001009
[14] S. Backus, C.G. Durfee, M.M. Murnane, and H.C. Kapteyn,
High power ultrafast lasers, Rev. Sci. Instr.
69,
1207–1223 (1998),
https://doi.org/10.1063/1.1148795
[15] A. Brodeur and S.L. Chin, Band-gap dependence of the
ultrafast white-light continuum, Phys. Rev. Lett.
80,
4406–4409 (1998),
https://doi.org/10.1103/PhysRevLett.80.4406
[16] A. Brodeur and S.L. Chin, Ultrafast white-light continuum
generation and self-focusing in transparent condensed media, J.
Opt. Soc. Am. B
16, 637–650 (1999),
https://doi.org/10.1364/JOSAB.16.000637
[17] K.R. Wilson and V.V. Yakovlev, Ultrafast rainbow: Tunable
ultrashort pulses from a solid-state kilohertz system, J. Opt.
Soc. Am. B
14, 444–448 (1997),
https://doi.org/10.1364/JOSAB.14.000444
[18] A. Couairon, V. Jukna, J. Darginavičius, D. Majus, N.
Garejev, I. Gražulevičiūtė, G. Valiulis, G. Tamošauskas, A.
Dubietis, F. Silva, et al., in:
Laser Filamentation, CRM
Series in Mathematical Physics, eds. A.D. Bandrauk et al.
(Springer, 2016) pp. 147–165,
https://doi.org/10.1007/978-3-319-23084-9_6
[19] S.L. Chin, S. Petit, F. Borne and K. Miyazaki, The white
light supercontinuum is indeed an ultrafast white light laser,
Jpn. J. Appl. Phys.
38, L126–128 (1999),
https://doi.org/10.1143/JJAP.38.L126
[20] W. Watanabe and K. Itoh, Spatial coherence of
supercontinuum emitted from multiple filaments, Jpn. J. Appl.
Phys.
40, 592–595 (2001),
https://doi.org/10.1143/JJAP.40.592
[21] B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H.
Buersing, B. Eberle, M. Krenz, D. Seiffer, and O. Vasseur,
Spatial mode cleaning by femtosecond filamentation in air, Opt.
Lett.
31, 2601–2603 (2006),
https://doi.org/10.1364/OL.31.002601
[22] D. Wegkamp, D. Brida, S. Bonora, G. Cerullo, J. Stähler, M.
Wolf, and S. Wall, Phase retrieval and compression of low-power
white-light pulses, Appl. Phys. Lett.
99, 101101 (2011),
https://doi.org/10.1063/1.3635396
[23] K. Midorikawa, H. Kawano, A. Suda, C. Nagura, and M. Obara,
Polarization properties of ultrafast white-light continuum
generated in condensed media, Appl. Phys. Lett.
80,
923–925 (2002),
https://doi.org/10.1063/1.1448146
[24] A.K. Dharmadhikari, F.A. Rajgara, and D. Mathur,
Depolarization of white light generated by ultrashort laser
pulses in optical media, Opt. Lett.
31, 2184–2186
(2006),
https://doi.org/10.1364/OL.31.002184
[25] R.S.S. Kumar, K.L.N. Deepak, and D.N. Rao, Depolarization
properties of the femtosecond supercontinuum generated in
condensed media, Phys. Rev. A
78, 043818 (2008),
https://doi.org/10.1103/PhysRevA.78.043818
[26] M. Bradler, P. Baum, and E. Riedle, Femtosecond continuum
generation in bulk laser host materials with sub-μJ pump pulses,
Appl. Phys. B
97, 561–574 (2009),
https://doi.org/10.1007/s00340-009-3699-1
[27] U. Megerle, I. Pugliesi, C. Schriever, C.F. Sailer, and E.
Riedle, Sub-50 fs broadband absorption spectroscopy with tunable
excitation: putting the analysis of ultrafast molecular dynamics
on solid ground, Appl. Phys. B
96, 215–231 (2009),
https://doi.org/10.1007/s00340-009-3610-0
[28] D. Majus, V. Jukna, E. Pileckis, G. Valiulis, and A.
Dubietis, Rogue-wave-like statistics in ultrafast white-light
continuum generation in sapphire, Opt. Express
19,
16317–16323 (2011),
https://doi.org/10.1364/OE.19.016317
[29] A. van de Walle, M. Hanna, F. Guichard, Y. Zaouter, A.
Thai, N. Forget, and P. Georges, Spectral and spatial
full-bandwidth correlation analysis of bulk-generated
supercontinuum in the mid-infrared, Opt. Lett.
40,
673–675 (2015),
https://doi.org/10.1364/OL.40.000673
[30] D. Majus and A. Dubietis, Statistical properties of
ultrafast supercontinuum generated by femtosecond Gaussian and
Bessel beams: a comparative study, J. Opt. Soc. Am. B
30,
994–999 (2013),
https://doi.org/10.1364/JOSAB.30.000994
[31] M. Bradler and E. Riedle, Temporal and spectral
correlations in bulk continua and improved use in transient
spectroscopy, J. Opt. Soc. Am. B
31, 1465–1475 (2014),
https://doi.org/10.1364/JOSAB.31.001465
[32] G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van
Mourik, and M. Chergui, Femtosecond pump/supercontinuumprobe
setup with 20 kHz repetition rate, Rev. Sci. Instrum.
83,
093105 (2012),
https://doi.org/10.1063/1.4750978
[33] C. Calabrese, A.M. Stingel, L. Shen, and P.B. Petersen,
Ultrafast continuum mid-infrared spectroscopy: probing the
entire vibrational spectrum in a single laser shot with
femtosecond time resolution, Opt. Lett.
37, 2265–2267
(2012),
https://doi.org/10.1364/OL.37.002265
[34] E. Riedle, M. Bradler, M. Wenninger, C.F. Sailer, and I.
Pugliesi, Electronic transient spectroscopy from the deep-UV to
the NIR: unambiguous disentanglement of complex processes,
Faraday Discuss.
163, 139–158 (2013),
https://doi.org/10.1039/c3fd00010a
[35] M. Balu, J. Hales, D.J. Hagan, and E.W. Van Stryland,
White-light continuum Z-scan technique for nonlinear materials
characterization, Opt. Express
12, 3820–3826 (2004),
https://doi.org/10.1364/OPEX.12.003820
[36] L. De Boni, A.A. Andrade, L. Misoguti, C. Mendonça, and
S.C. Zilio, Z-scan measurements using femtosecond continuum
generation, Opt. Express
12, 3921–3927 (2004),
https://doi.org/10.1364/OPEX.12.003921
[37] K. Cook, A.K. Kar, and R.A. Lamb, White-light
supercontinuum interference of self-focused filaments in water,
Appl. Phys. Lett.
83, 3861–3863 (2003),
https://doi.org/10.1063/1.1624640
[38] C. Corsi, A. Tortora, and M. Bellini, Generation of a
variable linear array of phase-coherent supercontinuum sources,
Appl. Phys. B
78, 299–304 (2004),
https://doi.org/10.1007/s00340-003-1381-6
[39] M. Bellini and T.W. Hänsch, Phase-locked white-light
continuum pulses: toward a universal optical frequency-comb
synthesizer, Opt. Lett.
25, 1049–1051 (2000),
https://doi.org/10.1364/OL.25.001049
[40] M. Bellini and T.W. Hänsch, Generation and applications of
phase-locked white-light continuum pulses, Laser Part. Beams
19,
157–159 (2001),
https://doi.org/10.1017/S0263034601191251
[41] A. Tortora, C. Corsi, and M. Bellini, Comb-like
supercontinuum generation in bulk media, Appl. Phys. Lett.
85,
1113–1115 (2004),
https://doi.org/10.1063/1.1784041
[42] P. Baum, S. Lochbrunner, J. Piel, and E. Riedle,
Phase-coherent generation of tunable visible femtosecond pulses,
Opt. Lett.
28, 185–187 (2003),
https://doi.org/10.1364/OL.28.000185
[43] P. Baum, E. Riedle, M. Greve, and H.R. Telle, Phase-locked
ultrashort pulse trains at separate and independently tunable
wavelengths, Opt. Lett.
30, 2028–2030 (2005),
https://doi.org/10.1364/OL.30.002028
[44] Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A.
Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, Ciliary
white light: optical aspect of ultrashort laser ablation on
transparent dielectrics, Phys. Rev. Lett.
110, 097601
(2013),
https://doi.org/10.1103/PhysRevLett.110.097601
[45] G. Cerullo and S. De Silvestri, Ultrafast optical
parametric amplifiers, Rev. Sci. Instrum.
74, 1–18
(2003),
https://doi.org/10.1063/1.1523642
[46] T. Wilhelm, J. Piel, and E. Riedle, Sub-20-fs pulses
tunable across the visible from a blue-pumped single pass
noncollinear parametric converter, Opt. Lett.
22,
1494–1496 (1997),
https://doi.org/10.1364/OL.22.001494
[47] D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P.
Villoresi, S. De Silvestri, and G. Cerullo, Few-optical-cycle
pulses tunable from the visible to the mid-infrared by optical
parametric amplifiers, J. Opt.
12, 013001 (2010),
https://doi.org/10.1088/2040-8978/12/1/013001
[48] C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, and G.
Cerullo, Optical-parametric-generation process driven by
femtosecond pulses: Timing and carrier-envelope phase
properties, Phys. Rev. A
79, 033818 (2009),
https://doi.org/10.1103/PhysRevA.79.033818
[49] A. Dubietis, R. Butkus, and A.P. Piskarskas, Trends in
chirped pulse optical parametric amplification, IEEE J. Sel.
Top. Quant. Electron.
12, 163–172 (2006),
https://doi.org/10.1109/JSTQE.2006.871962
[50] A. Harth, M. Schultze, T. Lang, T. Binhammer, S. Rausch,
and U. Morgner, Two-color pumped OPCPA system emitting spectra
spanning 1.5 octaves from VIS to NIR, Opt. Express 20, 3076–
3081 (2012),
https://doi.org/10.1364/OE.20.003076
[51] M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler,
P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S.
Hädrich, et al., Yb:YAG Innoslab amplifier: efficient high
repetition rate subpicosecond pumping system for optical
parametric chirped pulse amplification, Opt. Lett.
36,
2456–2458 (2011),
https://doi.org/10.1364/OL.36.002456
[52] R. Budriūnas, T. Stanislauskas, J. Adamonis, A.
Aleknavičius, G. Veitas, D. Gadonas, S. Balickas, A.
Michailovas, and A. Varanavičius, 53 W average power
CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses
at 1 kHz repetition rate, Opt. Express
25, 5797–5806
(2017),
https://doi.org/10.1364/OE.25.005797
[53] S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Thberge, N.
Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, and H.
Schroeder, The propagation of powerful femtosecond laser pulses
in optical media: physics, applications, and new challenges,
Can. J. Phys.
83, 863–905 (2005),
https://doi.org/10.1139/p05-048
[54] A. Couairon and A. Mysyrowicz, Femtosecond filamentation in
transparent media, Phys. Rep.
441, 47–190 (2007),
https://doi.org/10.1016/j.physrep.2006.12.005
[55] L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P.
Wolf, Ultrashort filaments of light in weakly ionized, optically
transparent media, Rep. Prog. Phys.
70, 1633–1713
(2007),
https://doi.org/10.1088/0034-4885/70/10/R03
[56] V.P. Kandidov, S.A. Shlenov, and O.G. Kosareva,
Filamentation of high-power femtosecond laser radiation, Quantum
Electron.
39, 205–228 (2009),
https://doi.org/10.1070/QE2009v039n03ABEH013916
[57] J.H. Marburger, Self-focusing: Theory, Prog. Quantum
Electron.
4, 35–110 (1975),
https://doi.org/10.1016/0079-6727(75)90003-8
[58] A. Dubietis, A. Couairon, E. Kučinskas, G. Tamošauskas, E.
Gaižauskas, D. Faccio, and P. Di Trapani, Measurement and
calculation of nonlinear absorption associated with femtosecond
filaments in water, Appl. Phys. B
84, 439–446 (2006),
https://doi.org/10.1007/s00340-006-2249-3
[59] M. Sheik-Bahae, D.J. Hagan, and E.W. Van Stryland,
Dispersion and band-gap scaling of the electronic Kerr effect in
solids associated with two-photon absorption, Phys. Rev. Lett.
65,
96– 99 (1990),
https://doi.org/10.1103/PhysRevLett.65.96
[60] W. Liu, S. Petit, A. Becker, N. Aközbek, C.M. Bowden, and
S.L. Chin, Intensity clamping of a femtosecond laser pulse in
condensed matter, Opt. Commun.
202, 189–197 (2002),
https://doi.org/10.1016/S0030-4018(01)01698-4
[61] M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright,
Physical factors limiting the spectral extent and band gap
dependence of supercontinuum generation, Phys. Rev. Lett.
91,
043905 (2003),
https://doi.org/10.1103/PhysRevLett.91.043905
[62] M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright,
Theory and simulation of supercontinuum generation in
transparent bulk media, Appl. Phys. B
77, 185–195
(2003),
https://doi.org/10.1007/s00340-003-1178-7
[63] S. Skupin and L. Bergé, Self-guiding of femtosecond light
pulses in condensed media: Plasma generation versus chromatic
dispersion, Physica D
220, 14–30 (2006),
https://doi.org/10.1016/j.physd.2006.06.006
[64] P. Chernev and V. Petrov, Self-focusing of light pulses in
the presence of normal group-velocity dispersion, Opt. Lett.
17,
172–174 (1992),
https://doi.org/10.1364/OL.17.000172
[65] J.E. Rothenberg, Pulse splitting during self-focusing in
normally dispersive media, Opt. Lett.
17, 583–585
(1992),
https://doi.org/10.1364/OL.17.000583
[66] J.E. Rothenberg, Space-time focusing: breakdown of the
slowly varying envelope approximation in the self-focusing of
femtosecond pulses, Opt. Lett.
17, 1340–1342 (1992),
https://doi.org/10.1364/OL.17.001340
[67] G. Fibich and G.C. Papanicolaou, Self-focusing in the
presence of small time dispersion and non-paraxiality, Opt.
Lett.
22, 1397–1399 (1997),
https://doi.org/10.1364/OL.22.001379
[68] J.K. Ranka, R.W. Schirmer, and A.L. Gaeta, Observation of
pulse splitting in nonlinear dispersive media, Phys. Rev. Lett.
77, 3783–3786 (1996),
https://doi.org/10.1103/PhysRevLett.77.3783
[69] J.K. Ranka and A.L. Gaeta, Breakdown of the slowly varying
envelope approximation in the self-focusing of ultrashort
pulses, Opt. Lett.
23, 534–536 (1998),
https://doi.org/10.1364/OL.23.000534
[70] S.A. Diddams, H.K. Eaton, A.A. Zozulya, and T.S. Clement,
Amplitude and phase measurements of femtosecond pulse splitting
in nonlinear dispersive media, Opt. Lett.
23, 379–381
(1998),
https://doi.org/10.1364/OL.23.000379
[71] A.A. Zozulya, S.A. Diddams, A.G. Van Engen, and T.S.
Clement, Propagation dynamics of intense femtosecond pulses:
multiple splittings, coalescence, and continuum generation,
Phys. Rev. Lett.
82, 1430–1433 (1999),
https://doi.org/10.1103/PhysRevLett.82.1430
[72] A.L. Gaeta, Catastrophic collapse of ultrashort pulses,
Phys. Rev. Lett.
84, 3582–3585 (2000),
https://doi.org/10.1103/PhysRevLett.84.3582
[73] A.L. Gaeta, Spatial and temporal dynamics of collapsing
ultrashort laser pulses, Topics Appl. Phys.
114, 399–412
(2009),
https://doi.org/10.1007/978-0-387-34727-1_16
[74] Y. Silberberg, Collapse of optical pulses, Opt. Lett.
15,
1282–1284 (1990),
https://doi.org/10.1364/OL.15.001282
[75] L. Bergé and S. Skupin, Self-channeling of ultrashort laser
pulses in materials with anomalous dispersion, Phys. Rev. E
71,
065601(R) (2005),
https://doi.org/10.1103/PhysRevE.71.065601
[76] J. Liu, R. Li, and Z. Xu, Few-cycle spatiotemporal soliton
wave excited by filamentation of a femtosecond laser pulse in
materials with anomalous dispersion, Phys. Rev. A
74,
043801 (2006),
https://doi.org/10.1103/PhysRevA.74.043801
[77] S.V. Chekalin, V.O. Kompanets, E.O. Smetanina, and V.P.
Kandidov, Light bullets and supercontinuum spectrum during
femtosecond pulse filamentation under conditions of anomalous
group-velocity dispersion in fused silica, Quant. Electron.
43,
326–331 (2013),
https://doi.org/10.1070/QE2013v043n04ABEH015110
[78] K.D. Moll and A.L. Gaeta, Role of dispersion in
multiple-collapse dynamics, Opt. Lett.
29, 995– 997
(2004),
https://doi.org/10.1364/OL.29.000995
[79] A. Saliminia, S.L. Chin, and R. Vallée, Ultrabroad and
coherent white light generation in silica glass by focused
femtosecond pulses at 1.5 μm, Opt. Express
13, 5731–5738
(2005),
https://doi.org/10.1364/OPEX.13.005731
[80] F. Silva, D.R. Austin, A. Thai, M. Baudisch, M. Hemmer, D.
Faccio, A. Couairon, and J. Biegert, Multi-octave supercontinuum
generation from mid-infrared filamentation in a bulk crystal,
Nat. Commun.
3, 807 (2012),
https://doi.org/10.1038/ncomms1816
[81] M. Durand, A. Jarnac, A. Houard, Y. Liu, S. Grabielle, N.
Forget, A. Durécu, A. Couairon, and A. Mysyrowicz, Selfguided
propagation of ultrashort laser pulses in the anomalous
dispersion region of transparent solids: a new regime of
filamentation, Phys. Rev. Lett.
110, 115003 (2013),
https://doi.org/10.1103/PhysRevLett.110.115003
[82] E.O. Smetanina, V.O. Kompanets, A.E. Dormidonov, S.V.
Chekalin, and V.P. Kandidov, Light bullets from near-IR filament
in fused silica, Laser Phys. Lett.
10, 105401 (2013),
https://doi.org/10.1088/1612-2011/10/10/105401
[83] D. Majus, G. Tamošauskas, I. Gražulevičiūtė, N. Garejev, A.
Lotti, A. Couairon, D. Faccio, and A. Dubietis, Nature of
spatiotemporal light bullets in bulk Kerr media, Phys. Rev.
Lett.
112, 193901 (2014),
https://doi.org/10.1103/PhysRevLett.112.193901
[84] I. Gražulevičiūtė, R. Šuminas, G. Tamošauskas, A. Couairon,
and A. Dubietis, Carrier-envelope phase-stable spatiotemporal
light bullets, Opt. Lett.
40, 3719–3722 (2015),
https://doi.org/10.1364/OL.40.003719
[85] S.V. Chekalin, A.E. Dokukina, A.E. Dormidonov, V.O.
Kompanets, E.O. Smetanina, and V.P. Kandidov, Light bullets from
a femtosecond filament, J. Phys. B
48, 094008 (2015),
https://doi.org/10.1088/0953-4075/48/9/094008
[86] R. Šuminas, G. Tamošauskas, G. Valiulis, and A. Dubietis,
Spatiotemporal light bullets and supercontinuum generation in
β-BBO crystal with competing quadratic and cubic nonlinearities,
Opt. Lett.
41, 2097–2100 (2016),
https://doi.org/10.1364/OL.41.002097
[87] I. Gražulevičiūtė, N. Garejev, D. Majus, V. Jukna, G.
Tamošauskas, and A. Dubietis, Filamentation and light bullet
formation dynamics in solid-state dielectric media with weak,
moderate and strong anomalous group velocity dispersion, J. Opt.
18, 025502 (2016),
https://doi.org/10.1088/2040-8978/18/2/025502
[88] M. Kolesik, E.M. Wright, and J.V. Moloney, Interpretation
of the spectrally resolved far field of femtosecond pulses
propagating in bulk nonlinear dispersive media, Opt. Express
13,
10729– 10741 (2005),
https://doi.org/10.1364/OPEX.13.010729
[89] D. Faccio, P. Di Trapani, S. Minardi, A. Bramati, F.
Bragheri, C. Liberale, V. Degiorgio, A. Dubietis, and A.
Matijosius, Far-field spectral characterization of conical
emission and filamentation in Kerr media, J. Opt. Soc. Am. B
22,
862–869 (2005),
https://doi.org/10.1364/JOSAB.22.000862
[90] M.A. Porras, A. Dubietis, E. Kučinskas, F. Bragheri, V.
Degiorgio, A. Couairon, D. Faccio, and P. Di Trapani, From X- to
O-shaped spatiotemporal spectra of light filaments in water,
Opt. Lett.
30, 3398–3400 (2005),
https://doi.org/10.1364/OL.30.003398
[91] D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J.V. Moloney,
A. Couairon, and P. Di Trapani, Generation and control of
extreme blueshifted continuum peaks in optical Kerr media, Phys.
Rev. A
78, 033825 (2008),
https://doi.org/10.1103/PhysRevA.78.033825
[92] D. Faccio, M. Clerici, A. Averchi, A. Lotti, O.
Jedrkiewicz, A. Dubietis, G. Tamosauskas, A. Couairon, F.
Bragheri, D. Papazoglou, S. Tzortzakis, and P. Di Trapani,
Few-cycle laser-pulse collapse in Kerr media: The role of
group-velocity dispersion and X-wave formation, Phys. Rev. A
78,
033826 (2008),
https://doi.org/10.1103/PhysRevA.78.033826
[93] M. Kolesik, E.M. Wright, and J.V. Moloney, Dynamic
nonlinear X waves for femtosecond pulse propagation in water,
Phys. Rev. Lett.
92, 253901 (2004),
https://doi.org/10.1103/PhysRevLett.92.253901
[94] A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P.
Di Trapani, Nonlinear X-wave formation by femtosecond
filamentation in Kerr media, Phys. Rev. E
73, 016608
(2006),
https://doi.org/10.1103/PhysRevE.73.016608
[95] M.A. Porras, A. Parola, and P. Di Trapani, Nonlinear
unbalanced O waves: nonsolitary, conical light bullets in
nonlinear dissipative media, J. Opt. Soc. Am. B
22,
1406–1413 (2005),
https://doi.org/10.1364/JOSAB.22.001406
[96] A. Dubietis, E. Gaižauskas, G. Tamošauskas, and P. Di
Trapani, Light filaments without self-channeling, Phys. Rev.
Lett.
92, 253903 (2004),
https://doi.org/10.1103/PhysRevLett.92.253903
[97] A. Dubietis, E. Kučinskas, G. Tamošauskas, E. Gaižauskas,
M.A. Porras, and P. Di Trapani, Self-reconstruction of light
filaments, Opt. Lett.
29, 2893–2895 (2004),
https://doi.org/10.1364/OL.29.002893
[98] I. Gražulevičiūtė, G. Tamošauskas, V. Jukna, A. Couairon,
D. Faccio, and A. Dubietis, Self-reconstructing spatiotemporal
light bullets, Opt. Express
22, 30613–30622 (2014),
https://doi.org/10.1364/OE.22.030613
[99] D. Faccio, M.A. Porras, A. Dubietis, F. Bragheri, A.
Couairon, and P. Di Trapani, Conical emission, pulse splitting,
and X-wave parametric amplification in nonlinear dynamics of
ultrashort light pulses, Phys. Rev. Lett.
96, 193901
(2006),
https://doi.org/10.1103/PhysRevLett.96.193901
[100] M. Kolesik and J.V. Moloney, Nonlinear optical pulse
propagation simulation: From Maxwell's to unidirectional
equations, Phys. Rev. E
70, 036604 (2004),
https://doi.org/10.1103/PhysRevE.70.036604
[101] A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J.
Ramírez-Góngora, and M. Kolesik, Practitioner's guide to laser
pulse propagation models and simulation, Eur. Phys. J. Spec.
Top.
199, 5–76 (2011),
https://doi.org/10.1140/epjst/e2011-01503-3
[102] A. Couairon, O.G. Kosareva, N.A. Panov, D.E. Shipilo, V.A.
Andreeva, V. Jukna, and F. Nesa, Propagation equation for
tight-focusing by a parabolic mirror, Opt. Express
23,
31240–31252 (2015),
https://doi.org/10.1364/OE.23.031240
[103] A.V. Husakou and J. Herrmann, Supercontinuum generation of
higher-order solitons by fission in photonic crystal fibers,
Phys. Rev. Lett.
87, 203901 (2001),
https://doi.org/10.1103/PhysRevLett.87.203901
[104] T. Brabec and F. Krausz, Nonlinear optical pulse
propagation in the single-cycle regime, Phys. Rev. Lett.
78,
3282–3285 (1997),
https://doi.org/10.1103/PhysRevLett.78.3282
[105] M. Kolesik and J.V. Moloney, Modeling and simulation
techniques in extreme nonlinear optics of gaseous and condensed
media, Rep. Prog. Phys.
77, 016401 (2014),
https://doi.org/10.1088/0034-4885/77/1/016401
[106] M.J. Weber,
Handbook of Optical Materials (CRC
Press, London, 2003),
https://www.crcpress.com/Handbook-of-Optical-Materials/Weber/p/book/9780849335129
[107] R. DeSalvo, A.A. Said, D.J. Hagan, E.W. Van Stryland, and
M. Sheik-Bahae, Infrared to ultraviolet measurements of
two-photon absorption and
n2 in wide-bandgap
solids, IEEE J. Quantum Electron.
32, 1324–1333 (1996),
https://doi.org/10.1109/3.511545
[108] H.H. Li, Refractive index of alkali halides and its
wavelength and temperature derivatives, J. Phys. Chem. Ref. Data
5, 329–528 (1976),
https://doi.org/10.1063/1.555536
[109] R. Adair, L.L. Chase, and S.A. Payne, Nonlinear refractive
index of optical crystals, Phys. Rev. B
39, 3337–3350
(1989),
https://doi.org/10.1103/PhysRevB.39.3337
[110] H.H. Li, Refractive index of alkali halides and its
wavelength and temperature derivatives, J. Phys. Chem. Ref. Data
9, 161–289 (1980),
https://doi.org/10.1063/1.555616
[111] A. Major, F. Yoshino, I. Nikolakakos, J.S. Aitchison, and
P.W.E. Smith, Dispersion of the nonlinear refractive index in
sapphire, Opt. Lett.
29, 602–604 (2004),
https://doi.org/10.1364/OL.29.000602
[112] A. Couairon, L. Sudrie, M. Franco, B. Prade, and A.
Mysyrowicz, Filamentation and damage in fused silica induced by
tightly focused femtosecond laser pulses, Phys. Rev. B
71,
125435 (2005),
https://doi.org/10.1103/PhysRevB.71.125435
[113] D. Milam, Review and assessment of measured values of the
nonlinear refractive-index coefficient of fused silica, Appl.
Opt.
37, 546–550 (1998),
https://doi.org/10.1364/AO.37.000546
[114] I.H. Malitson, Interspecimen comparison of the refractive
index of fused silica, J. Opt. Soc. Am.
55, 1205–1209
(1965),
https://doi.org/10.1364/JOSA.55.001205
[115] D.N. Nikogosyan,
Nonlinear Optical Crystals: A
Complete Survey (Springer Science & Business Media,
New York, 2005),
http://www.springer.com/us/book/9780387220222
[116] F. Zernike, Refractive indices of ammonium dihydrogen
phosphate and potassium dihydrogen phosphate between 2000 Å and
1.5 μm, J. Opt. Soc. Am.
54, 1215–1220 (1964),
https://doi.org/10.1364/JOSA.54.001215
[117] J.V. Coe, A.D. Earhart, M.H. Cohen, G.J. Hoffman, H.W.
Sarkas, and K.H. Bowen, Using cluster studies to approach the
electronic structure of bulk water: Reassessing the vacuum
level, conduction band edge, and band gap of water, J. Chem.
Phys.
107, 6023–6031 (1997),
https://doi.org/10.1063/1.474271
[118] E.T.J. Nibbering, M.A. Franco. B.S. Prade, G. Grillon, C.
Le Blanc, and A. Mysyrowicz, Measurements of the nonlinear
refractive index of transparent materials by spectral analysis
after nonlinear propagation, Opt. Commun.
119, 479–484
(1995),
https://doi.org/10.1016/0030-4018(95)00394-N
[119] A.G. Van Engen, S.A. Diddams, and T.S. Clement, Dispersion
measurements of water with white-light interferometry, Appl.
Opt.
37, 5679–5686 (1998),
https://doi.org/10.1364/AO.37.005679
[120] Y. Xu and W.Y. Ching, Electronic structure of yttrium
aluminum garnet (Y
3Al
5O
12),
Phys. Rev. B
59, 10530–10535 (1999),
https://doi.org/10.1103/PhysRevB.59.10530
[121] D.E. Zelmon, D.L. Small, and R. Page, Refractive-index
measurements of undoped yttrium aluminum garnet from 0.4 to 5.0
μm, Appl. Opt.
37, 4933–4935 (1998),
https://doi.org/10.1364/AO.37.004933
[122] M. Bache, H. Guo, B. Zhou, and X. Zeng, The anisotropic
Kerr nonlinear refractive index of the beta-barium borate (
β-BaB
2O
4)
nonlinear crystal, Opt. Mater. Express
3, 357–382
(2013),
https://doi.org/10.1364/OME.3.000357
[123] D. Zhang, Y. Kong, and J.Y. Zhang, Optical parametric
properties of 532-nm-pumped beta-barium-borate near the infrared
absorption edge, Opt. Commun.
184, 485–491 (2000),
https://doi.org/10.1016/S0030-4018(00)00968-8
[124] D.J. Little, M. Ams, and M.J. Withford, Influence of
bandgap and polarization on photoionization: guidelines for
ultrafast laser inscription, Opt. Mater. Express
1,
670–677 (2011),
https://doi.org/10.1364/OME.1.000670
[125] SCHOTT Optical Glass Data Sheets (2015)
[126] A. Major, I. Nikolakakos, J.S. Aitchison, A.I. Ferguson,
N. Langford, and P.W.E. Smith, Characterization of the nonlinear
refractive index of the laser crystal Yb:KGd(WO
4)
2,
Appl. Phys. B
77, 433–436 (2003),
https://doi.org/10.1007/s00340-003-1252-1
[127] C.E. Webb and J.D. Jones,
Handbook of Laser Technology
and Applications: Laser Design and Laser Systems, Vol. 2
(CRC Press, 2004),
https://doi.org/10.1887/0750306076
[128] A.G. Selivanov, I.A. Denisov, N.V. Kuleshov, and K.V.
Yumashev, Nonlinear refractive properties of Yb
3+
-doped KY(WO
4)
2 and YVO
4 laser
crystals, Appl. Phys. B
83, 61–65 (2006),
https://doi.org/10.1007/s00340-005-2098-5
[129] M.C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X.
Solans, M. Aguiló, and F. Díaz, Crystalline structure and
optical spectroscopy of Er
3+-doped KGd(WO
4)
2
single crystals, Appl. Phys. B
68, 187–197 (1999),
https://doi.org/10.1007/s003400050605
[130] M.R. Dolgos, A.M. Paraskos, M.W. Stoltzfus, S.C. Yarnell,
and P.M. Woodward, The electronic structures of vanadate salts:
Cation substitution as a tool for band gap manipulation, J.
Solid State Chem.
182, 1964–1971 (2009),
https://doi.org/10.1016/j.jssc.2009.04.032
[131] N.T. Nguyen, A. Saliminia, W. Liu, S.L. Chin, and R.
Valée, Optical breakdown versus filamentation in fused silica by
use of femtosecond infrared laser pulses, Opt. Lett.
28,
1591–1593 (2003),
https://doi.org/10.1364/OL.28.001591
[132] J.B. Ashcom, R.R. Gattass, C.B. Schaffer, and E. Mazur,
Numerical aperture dependence of damage and supercontinuum
generation from femtosecond laser pulses in bulk fused silica,
J. Opt. Soc. Am. B
23, 2317–2322 (2006),
https://doi.org/10.1364/JOSAB.23.002317
[133] V. Jukna, J. Galinis, G. Tamošauskas, D. Majus, and A.
Dubietis, Infrared extension of femtosecond supercontinuum
generated by filamentation in solid-state media, Appl. Phys. B
116,
477–483 (2014),
https://doi.org/10.1007/s00340-013-5723-8
[134] Z.X. Wu, H.B. Jiang, L. Luo, H.C. Guo, H. Yang, and Q.H.
Gong, Multiple foci and a long filament observed with focused
femtosecond pulse propagation in fused silica, Opt. Lett.
27,
448–450 (2002),
https://doi.org/10.1364/OL.27.000448
[135] W. Liu, S.L. Chin, O. Kosareva, I.S. Golubtsov, and V.P.
Kandidov, Multiple refocusing of a femtosecond laser pulse in a
dispersive liquid (methanol), Opt. Commun.
225, 193–209
(2003),
https://doi.org/10.1016/j.optcom.2003.07.024
[136] A.K. Dharmadhikari, J.A. Dharmadhikari, and D. Mathur,
Visualization of focusing-refocusing cycles during filamentation
in BaF
2, Appl. Phys. B
94, 259–263 (2009),
https://doi.org/10.1007/s00340-008-3317-7
[137] M. Mlejnek, E.M. Wright, and J.V. Moloney, Dynamic spatial
replenishment of femtosecond pulses propagating in air, Opt.
Lett.
23, 382–384 (1998),
https://doi.org/10.1364/OL.23.000382
[138] A. Jarnac, G. Tamošauskas, D. Majus, A. Houard, A.
Mysyrowicz, A. Couairon, and A. Dubietis, Whole life cycle of
femtosecond ultraviolet filaments in water, Phys. Rev. A
89,
033809 (2014),
https://doi.org/10.1103/PhysRevA.89.033809
[139] A.V. Kuznetsov, V.O. Kompanets, A.E. Dormidonov, S.V.
Chekalin, S.A. Shlenov, and V.P. Kandidov, Periodic
colour-centre structure formed under filamentation of mid-IR
femtosecond laser radiation in a LiF crystal, Quant. Electron.
46,
379–386 (2016),
https://doi.org/10.1070/QEL16038
[140] A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan,
Multiple filamentation induced by input-beam ellipticity, Opt.
Lett.
29, 1126–1128 (2004),
https://doi.org/10.1364/OL.29.001126
[141] D. Majus, V. Jukna, G. Tamošauskas, G. Valiulis, and A.
Dubietis, Three-dimensional mapping of multiple filament arrays,
Phys. Rev. A
81, 043811 (2010),
https://doi.org/10.1103/PhysRevA.81.043811
[142] L. Bergé, S. Mauger, and S. Skupin, Multifilamentation of
powerful optical pulses in silica, Phys. Rev. A
81,
013817 (2010),
https://doi.org/10.1103/PhysRevA.81.013817
[143] C.B. Schaffer, A. Brodeur, and E. Mazur, Laser-induced
breakdown and damage in bulk transparent materials induced by
tightly focused femtosecond laser pulses, Meas. Sci. Technol.
12,
1784–1794 (2001),
https://doi.org/10.1088/0957-0233/12/11/305
[144] S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, and A.
Mysyrowicz, Self-guided propagation of ultrashort IR laser
pulses in fused silica, Phys. Rev. Lett.
87, 213902
(2001),
https://doi.org/10.1103/PhysRevLett.87.213902
[145] S. Tzortzakis, D.G. Papazoglou, and I. Zergioti,
Long-range filamentary propagation of subpicosecond ultraviolet
laser pulses in fused silica, Opt. Lett.
31, 796–798
(2006),
https://doi.org/10.1364/OL.31.000796
[146] C. Nagura, A. Suda, H. Kawano, M. Obara, and K.
Midorikawa, Generation and characterization of ultrafast
white-light continuum in condensed media, Appl. Opt.
41,
3735–3742 (2002),
https://doi.org/10.1364/AO.41.003735
[147] X.-J. Fang and T. Kobayashi, Evolution of a
super-broadened spectrum in a filament generated by an
ultrashort intense laser pulse in fused silica, Appl. Phys. B
77,
167–170 (2003),
https://doi.org/10.1007/s00340-003-1176-9
[148] H. Dachraoui, C. Oberer, M. Michelswirth, and U.
Heinzmann, Direct time-domain observation of laser pulse
filaments in transparent media, Phys. Rev. A
82, 043820
(2010),
https://doi.org/10.1103/PhysRevA.82.043820
[149] L. Zhang, T. Xi, Z. Hao, and J. Lin, Supercontinuum
accumulation along a single femtosecond filament in fused
silica, J. Phys. D
49, 115201 (2016),
https://doi.org/10.1088/0022-3727/49/11/115201
[150] A.K. Dharmadhikari, F.A. Rajgara, and D. Mathur,
Systematic study of highly efficient white-light generation in
transparent materials using intense femtosecond pulses, Appl.
Phys. B
80, 61–66 (2005),
https://doi.org/10.1007/s00340-004-1682-4
[151] A.K. Dharmadhikari, F.A. Rajgara, and D. Mathur,
Depolarization of white light generated by ultrashort laser
pulses in optical media, Opt. Lett.
31, 2184–2186
(2006),
https://doi.org/10.1364/OL.31.002184
[152] J. Yang and G. Mu, Multi-dimensional observation of
white-light filaments generated by femtosecond laser pulses in
condensed medium, Opt. Express
15, 4943–4952 (2007),
https://doi.org/10.1364/OE.15.004943
[153] J. Jiang, Y. Zhong, Y. Zheng, Z. Zeng, X. Ge, and R. Li,
Broadening of white-light continuum by filamentation in BK7
glass at its zero-dispersion point, Phys. Lett. A
379,
1929–1933 (2015),
https://doi.org/10.1016/j.physleta.2015.04.020
[154] M.L. Naudeau, R.J. Law, T.S. Luk, T.R. Nelson, and S.M.
Cameron, Observation of nonlinear optical phenomena in air and
fused silica using a 100 GW, 1.54 μm source, Opt. Express
14,
6194–6200 (2006),
https://doi.org/10.1364/OE.14.006194
[155] D. Faccio, A. Averchi, A. Couairon, A. Dubietis, R.
Piskarskas, A. Matijošius, F. Bragheri, M.A. Porras, A.
Piskarskas, and P. Di Trapani, Competition between
phase-matching and stationarity in Kerr-driven optical pulse
filamentation, Phys. Rev. E
74, 047603 (2006),
https://doi.org/10.1103/PhysRevE.74.047603
[156] M.A. Porras, A. Dubietis, A. Matijošius, R. Piskarskas, F.
Bragheri, A. Averchi, and P. Di Trapani, Characterization of
conical emission of light filaments in media with anomalous
dispersion, J. Opt. Soc. Am. B
24, 581–584 (2007),
https://doi.org/10.1364/JOSAB.24.000581
[157] M. Durand, K. Lim, V. Jukna, E. McKee, M. Baudelet, A.
Houard, M. Richardson, A. Mysyrowicz, and A. Couairon,
Blueshifted continuum peaks from filamentation in the anomalous
dispersion regime, Phys. Rev. A
87, 043820 (2013),
https://doi.org/10.1103/PhysRevA.87.043820
[158] E.O. Smetanina, V.O. Kompanets, S.V. Chekalin, A.E.
Dormidonov, and V.P. Kandidov, Anti-Stokes wing of femtosecond
laser filament supercontinuum in fused silica, Opt. Lett.
38,
16–18 (2013),
https://doi.org/10.1364/OL.38.000016
[159] S.V. Chekalin, V.O. Kompanets, A.E. Dokukina, A.E.
Dormidonov, E.O. Smetanina, and V.P. Kandidov, Visible
supercontinuum radiation of light bullets in the femtosecond
filamentation of IR pulses in fused silica, Quant. Electron.
45,
401–407 (2015),
https://doi.org/10.1070/QE2015v045n05ABEH015773
[160] I. Gražulevičiūtė, R. Šuminas, G. Tamošauskas, A.
Couairon, and A. Dubietis, Carrier-envelope phase-stable
spatiotemporal light bullets, Opt. Lett.
40, 3719–3722
(2015),
https://doi.org/10.1364/OL.40.003719
[161] J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G.
Valiulis, A. Couairon, and A. Dubietis, Ultrabroadband
supercontinuum and third-harmonic generation in bulk solids with
two optical-cycle carrier-envelope phase-stable pulses at 2 μm,
Opt. Express
21, 25210–25220 (2013),
https://doi.org/10.1364/OE.21.025210
[162] J.A. Dharmadhikari, R.A. Deshpande, A. Nath, K. Dota, D.
Mathur, and A.K. Dharmadhikari, Effect of group velocity
dispersion on supercontinuum generation and filamentation in
transparent solids, Appl. Phys. B
117, 471–479 (2014),
https://doi.org/10.1007/s00340-014-5857-3
[163] N. Garejev, G. Tamošauskas, and A. Dubietis, Comparative
study of multioctave supercontinuum generation in fused silica,
YAG, and LiF in the range of anomalous group velocity
dispersion, J. Opt. Soc. Am. B
34, 88–94 (2017),
https://doi.org/10.1364/JOSAB.34.000088
[164] Y. Yang, M. Liao, X. Li, W. Bi, Y. Ohishi, T. Cheng, Y.
Fang, G. Zhao, and W. Gao, Filamentation and supercontinuum
generation in lanthanum glass, J. Appl. Phys.
121,
023107 (2017),
https://doi.org/10.1063/1.4974005
[165] M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H.
Kawashima, T. Suzuki, and Y. Ohishi, Five-octave-spanning
supercontinuum generation in fluoride glass, Appl. Phys. Express
6, 032503 (2013),
https://doi.org/10.7567/APEX.6.032503
[166] M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima,
T. Suzuki, and Y. Ohishi, Ultrabroad supercontinuum generation
through filamentation in tellurite glass, Laser Phys. Lett.
10,
036002 (2013),
https://doi.org/10.1088/1612-2011/10/3/036002
[167] P. Béjot, F. Billard, C. Peureux, T. Diard, J.
Picot-Clémente, C. Strutynski, P. Mathey, O. Mouawad, O.
Faucher, K. Nagasaka, Y. Ohishi, and F. Smektala,
Filamentation-induced spectral broadening and pulse shortening
of infrared pulses in Tellurite glass, Opt. Commun.
380,
245–249 (2016),
https://doi.org/10.1016/j.optcom.2016.06.003
[168] Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y.
Choi, S. Madden, and B. Luther-Davies, Mid-infrared
supercontinuum generation in chalcogenides, Opt. Mater. Express
3, 1075–1086 (2013),
https://doi.org/10.1364/OME.3.001075
[169] O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F.
Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala,
Mid-infrared filamentation-induced supercontinuum in As–S and an
As-free Ge–S counterpart chalcogenide glasses, Appl. Phys. B
121,
433–438 (2015),
https://doi.org/10.1007/s00340-015-6249-z
[170] A.M. Stingel, H. Vanselous, and P.B. Petersen, Covering
the vibrational spectrum with microjoule mid-infrared
supercontinuum pulses in nonlinear optical applications, J. Opt.
Soc. Am. B
34, 1163–1168 (2017),
https://doi.org/10.1364/JOSAB.34.001163
[171] W.L. Smith, P. Liu, and N. Bloembergen, Superbroadening in
H
2O and D
2O by self-focused picosecond
pulses from a YAlG:Nd laser, Phys. Rev. A
15, 2396–2403
(1977),
https://doi.org/10.1103/PhysRevA.15.2396
[172] I. Golub, Optical characteristics of supercontinuum
generation, Opt. Lett.
15, 305–307 (1990),
https://doi.org/10.1364/OL.15.000305
[173] G.S. He, G.C. Xu, Y. Cui, and P.N. Prasad, Difference of
spectral superbroadening behavior in Kerr-type and non-Kerr-type
liquids pumped with ultrashort laser pulses, Appl. Opt.
32,
4507– 4512 (1993),
https://doi.org/10.1364/AO.32.004507
[174] A. Brodeur, F.A. Ilkov, and S.L. Chin, Beam filamentation
and the white light continuum divergence, Opt. Commun.
129,
193–198 (1996),
https://doi.org/10.1016/0030-4018(96)00144-7
[175] A. Dubietis, G. Tamošauskas, I. Diomin, and A.
Varanavičius, Self-guided propagation of femtosecond light
pulses in water, Opt. Lett.
28, 1269–1271 (2003),
https://doi.org/10.1364/OL.28.001269
[176] W. Liu, O. Kosareva, I.S. Golubtsov, A. Iwasaki, A.
Becker, V.P. Kandidov, and S.L. Chin, Random deflection of the
white light beam during self-focusing and filamentation of a
femtosecond laser pulse in water, Appl. Phys. B
75,
595–599 (2002),
https://doi.org/10.1007/s00340-002-1036-z
[177] W. Liu, O. Kosareva, I.S. Golubtsov, A. Iwasaki, A.
Becker, V.P. Kandidov, and S.L. Chin, Femtosecond laser pulse
filamentation versus optical breakdown in H
2O, Appl.
Phys. B
76, 215– 229 (2003),
https://doi.org/10.1007/s00340-002-1087-1
[178] V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, W. Liu, A.
Becker, N. Aközbek, C.M. Bowden, and S.L. Chin,
Selftransformation of a powerful femtosecond laser pulse into a
white-light laser pulse in bulk optical media (or supercontinuum
generation), Appl. Phys. B
77, 149–165 (2003),
https://doi.org/10.1007/s00340-003-1214-7
[179] J. Liu, H. Schroeder, S.L. Chin, R. Li, and Z. Xu,
Nonlinear propagation of fs laser pulses in liquids and
evolution of supercontinuum generation, Opt. Express
13,
10248–10259 (2005),
https://doi.org/10.1364/OPEX.13.010248
[180] A.N. Tcypkin, S.E. Putilin, M.V. Melnik, E.A. Makarov,
V.G. Bespalov, and S.A. Kozlov, Generation of high-intensity
spectral supercontinuum of more than two octaves in a water jet,
Appl. Opt.
55, 8390–8394 (2016),
https://doi.org/10.1364/AO.55.008390
[181] P. Vasa, J.A. Dharmadhikari, A.K. Dharmadhikari, R.
Sharma, M. Singh, and D. Mathur, Supercontinuum generation in
water by intense, femtosecond laser pulses under anomalous
chromatic dispersion, Phys. Rev. A
89, 043834 (2014),
https://doi.org/10.1103/PhysRevA.89.043834
[182] J.A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D.
Mathur, and A.K. Dharmadhikari, Femtosecond supercontinuum
generation in water in the vicinity of absorption bands, Opt.
Lett.
41, 3475–3478 (2016),
https://doi.org/10.1364/OL.41.003475
[183] M. Ziolek, R. Naskrecki, and J. Karolczak, Some temporal
and spectral properties of femtosecond supercontinuum important
in pump-probe spectroscopy, Opt. Commun.
241, 221– 229
(2004),
https://doi.org/10.1016/j.optcom.2004.06.070
[184] V. Kartazaev and R.R. Alfano, Polarization properties of
SC generated in CaF
2, Opt. Commun.
281,
463–468 (2008),
https://doi.org/10.1016/j.optcom.2007.09.053
[185] P.J.M. Johnson, V.I. Prokhorenko, and R.J.D. Miller,
Stable UV to IR supercontinuum generation in calcium fluoride
with conserved circular polarization states, Opt. Express
17,
21488–21496 (2009),
https://doi.org/10.1364/OE.17.021488
[186] P. Tzankov, I. Buchvarov, and T. Fiebig, Broadband optical
parametric amplification in the near UV–VIS, Opt. Commun.
203,
107–113 (2002),
https://doi.org/10.1016/S0030-4018(02)01107-0
[187] I. Buchvarov, A. Trifonov, and T. Fiebig, Toward an
understanding of white-light generation in cubic media –
polarization properties across the entire spectral range, Opt.
Lett.
32, 1539–1541 (2007),
https://doi.org/10.1364/OL.32.001539
[188] J. Zeller, J. Jaspara, W. Rudolph, and M. Sheik-Bahae,
Spectro-temporal characterization of a femtosecond white-light
continuum by transient grating diffraction, Opt. Commun.
185,
133–137 (2000),
https://doi.org/10.1016/S0030-4018(00)00982-2
[189] N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle,
Two-dimensional Fourier transform spectroscopy in the
ultraviolet with sub-20 fs pump pulses and 250–720 nm
supercontinuum probe, New J. Phys.
15, 085016 (2013),
https://doi.org/10.1088/1367-2630/15/8/085016
[190] R. Huber, H. Satzger, W. Zinth, and J. Wachtveitl,
Noncollinear optical parametric amplifiers with output
parameters improved by the applications of a white light
continuum generated in CaF
2, Opt. Commun.
194,
443–448 (2001),
https://doi.org/10.1016/S0030-4018(01)01324-4
[191] J. Kohl-Landgraf, J.-E. Nimsch, and J. Wachtveitl, LiF, an
underestimated supercontinuum source in femtosecond transient
absorption spectroscopy, Opt. Express
21, 17060–17065
(2013),
https://doi.org/10.1364/OE.21.017060
[192] A.K. Dharmadhikari, F.A. Rajgara, N.C.S. Reddy, A.S.
Sandhu, and D. Mathur, Highly efficient white light generation
from barium fluoride, Opt. Express
12, 695–700 (2004),
https://doi.org/10.1364/OPEX.12.000695
[193] A.K. Dharmadhikari, K. Alti, J.A. Dharmadhikari, and D.
Mathur, Control of the onset of filamentation in condensed
media, Phys. Rev. A
76, 033811 (2007),
https://doi.org/10.1103/PhysRevA.76.033811
[194] A.K. Dharmadhikari, F.A. Rajgara, and D. Mathur, Plasma
effects and the modulation of white light spectra in the
propagation of ultrashort, high-power laser pulses in barium
fluoride, Appl. Phys. B
82, 575–583 (2006),
https://doi.org/10.1007/s00340-005-2121-x
[195] H. Liang, P. Krogen, R. Grynko, O. Novak, C.-L. Chang,
G.J. Stein, D. Weerawarne, B. Shim, F.X. Kärtner, and K.-H.
Hong, Three-octave-spanning supercontinuum generation and
sub-two-cycle self-compression of mid-infrared filaments in
dielectrics, Opt. Lett.
40, 1069–1072 (2015),
https://doi.org/10.1364/OL.40.001069
[196] A.E. Dormidonov, V.O. Kompanets, S.V. Chekalin, and V.P.
Kandidov, Giantically blue-shifted visible light in femtosecond
mid-IR filament in fluorides, Opt. Express
23,
29202–29210 (2015),
https://doi.org/10.1364/OE.23.029202
[197] S.V. Chekalin, V.O. Kompanets, A.E. Dormidonov, E.D.
Zaloznaya, and V.P. Kandidov, Supercontinuum spectrum upon
filamentation of laser pulses under conditions of strong and
weak anomalous group velocity dispersion in transparent
dielectrics, Quantum Electron.
47, 252–258 (2017),
https://doi.org/10.1070/QEL16289
[198] A.E. Dormidonov, V.O. Kompanets, S.V. Chekalin, and V.P.
Kandidov, Dispersion of the anti-stokes band in the spectrum of
a light bullet of a femtosecond filament, JETP Lett.
104,
175–179 (2016),
https://doi.org/10.1134/S002136401615008X
[199] S.V. Chekalin, V.O. Kompanets, A.E. Dormidonov, and V.P.
Kandidov, Influence of induced colour centres on the frequency –
angular spectrum of a light bullet of mid-IR radiation in
lithium fluoride, Quant. Electron.
47, 259–265 (2017),
https://doi.org/10.1070/QEL16285
[200] A. Marcinkevičiūtė, N. Garejev, R. Šuminas, G.
Tamošauskas, and A. Dubietis, A compact, self-compression-based
sub-3 optical cycle source in the 3–4 μm spectral range, J. Opt.
19, 105505 (2017),
https://doi.org/10.1088/2040-8986/aa873b
[201] M.K. Reed, M.K. Steiner-Shepard, and D.K. Negus, Widely
tunable femtosecond optical parametric amplifier at 250 kHz with
a Ti:sapphire regenerative amplifier, Opt. Lett.
19,
1855–1857 (1994),
https://doi.org/10.1364/OL.19.001855
[202] M.K. Reed, M.K. Steiner-Shepard, M.S. Armas, and D.K.
Negus, Microjoule-energy ultrafast optical parametric
amplifiers, J. Opt. Soc. Am. B
12, 2229–2236 (1995),
https://doi.org/10.1364/JOSAB.12.002229
[203] C. Manzoni and G. Cerullo, Design criteria for ultrafast
optical parametric amplifiers, J. Opt.
18, 103501
(2016),
https://doi.org/10.1088/2040-8978/18/10/103501
[204] M. Bradler and E. Riedle, Sub-20 fs μJ-energy pulses
tunable down to the near-UV from a 1 MHz Yb-fiber laser system,
Opt. Lett.
39, 2588–2591 (2014),
https://doi.org/10.1364/OL.39.002588
[205] T. Imran and G. Figueira, Intensity-phase characterization
of white-light continuum generated in sapphire by 280 fs laser
pulses at 1053 nm, J. Opt.
14, 035201 (2012),
https://doi.org/10.1088/2040-8978/14/3/035201
[206] R. Budriūnas, T. Stanislauskas, and A. Varanavičius,
Passively CEP-stabilized frontend for few cycle terawatt OPCPA
system, J. Opt.
17, 094008 (2015),
https://doi.org/10.1088/2040-8978/17/9/094008
[207] H. Fattahi, H. Wang, A. Alismail, G. Arisholm, V. Pervak,
A.M. Azzeer, and F. Krausz, Near-PHz-bandwidth, phasestable
continua generated from a Yb:YAG thin-disk amplifier, Opt.
Express
24, 24337–24346 (2016),
https://doi.org/10.1364/OE.24.024337
[208] M. Bradler, P. Baum, and E. Riedle, Continuum generation
in laser host materials towards table-top OPCPA, in:
Proceedings
of International Conference on Ultrafast Phenomena, paper
ME25 (2010),
https://doi.org/10.1364/UP.2010.ME25
[209] M. Bradler and E. Riedle, Continuum generation in laser
host materials with pump pulse durations covering the entire
femtosecond regime, in:
Advances in Optical Materials,
OSA Technical Digest (CD), paper AMD4 (2011),
https://doi.org/10.1364/ASSP.2011.AMD4
[210] A.-L. Calendron, H. Çankaya, G. Cirmi, and F.X. Kärtner,
White-light generation with sub-ps pulses, Opt. Express
23,
13866–13879 (2015),
https://doi.org/10.1364/OE.23.013866
[211] I. Gražulevičiūtė, M. Skeivytė, E. Keblytė, J. Galinis, G.
Tamošauskas, and A. Dubietis, Supercontinuum generation in YAG
and sapphire with picosecond laser pulses, Lith. J. Phys.
55,
110–116 (2015),
https://doi.org/10.3952/physics.v55i2.3101
[212] J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė,
V. Jukna, and A. Dubietis, Filamentation and supercontinuum
generation in solid-state dielectric media with picosecond laser
pulses, Phys. Rev. A
92, 033857 (2015),
https://doi.org/10.1103/PhysRevA.92.033857
[213] L. Kasmi, D. Kreier, M. Bradler, E. Riedle, and P. Baum,
Femtosecond single-electron pulses generated by two-photon
photoemission close to the work function, New J. Phys.
17,
033008 (2015),
https://doi.org/10.1088/1367-2630/17/3/033008
[214] M. Emons, A. Steinmann, T. Binhammer, G. Palmer, M.
Schultze, and U. Morgner, Sub-10-fs pulses from a MHz-NOPA with
pulse energies of 0.4 μJ, Opt. Express
18, 1191–1196
(2010),
https://doi.org/10.1364/OE.18.001191
[215] R. Riedel, A. Stephanides, M.J. Prandolini, B. Gronloh, B.
Jungbluth, T. Mans, and F. Tavella, Power scaling of
supercontinuum seeded megahertz-repetition rate optical
parametric chirped pulse amplifiers, Opt. Lett.
39,
1422–1424 (2014),
https://doi.org/10.1364/OL.39.001422
[216] N. Thiré, R. Maksimenka, B. Kiss, C. Ferchaud, P.
Bizouard, E. Cormier, K. Osvay, and N. Forget, 4-W, 100-kHz,
few-cycle mid-infrared source with sub-100-mrad carrier-envelope
phase noise, Opt. Express
25, 1505–1514 (2017),
https://doi.org/10.1364/OE.25.001505
[217] L. Indra, F. Batysta, P. Hříbek, J. Novák, Z. Hubka, J.T.
Green, R. Antipenkov, R. Boge, J.A. Naylon, P. Bakule, and B.
Rus, Picosecond pulse generated supercontinuum as a stable seed
for OPCPA, Opt. Lett.
42, 843–846 (2017),
https://doi.org/10.1364/OL.42.000843
[218] P. Rigaud, A. van de Walle, M. Hanna, N. Forget, F.
Guichard, Y. Zaouter, K. Guesmi, F. Druon, and P. Georges,
Supercontinuum-seeded few-cycle mid-infrared OPCPA system, Opt.
Express
24, 26494–26502 (2016),
https://doi.org/10.1364/OE.24.026494
[219] G.M. Archipovaite, S. Petit, J.-C. Delagnes, and E.
Cormier, 100 kHz Yb-fiber laser pumped 3 μm optical parametric
amplifier for probing solid-state systems in the strong field
regime, Opt. Lett.
42, 891–894 (2017),
https://doi.org/10.1364/OL.42.000891
[220] T. Kanai, P. Malevich, S.S. Kangaparambil, K. Ishida, M.
Mizui, K. Yamanouchi, H. Hoogland, R. Holzwarth, A. Pugzlys, and
A. Baltuska, Parametric amplification of 100 fs mid-infrared
pulses in ZnGeP
2 driven by a Ho:YAG chirped-pulse
amplifier, Opt. Lett.
42, 683–686 (2017),
https://doi.org/10.1364/OL.42.000683
[221] P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A.
Baltuška, and A. Pugžlys, Broadband mid-infrared pulses from
potassium titanyl arsenate/zinc germanium phosphate optical
parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG
chirped-pulse amplifier, Opt. Lett.
41, 930–933 (2017),
https://doi.org/10.1364/OL.41.000930
[222] W. Ryba-Romanowski, B. Macalik, A. Strzȩp, R. Lisiecki, P.
Solarz, and R.M. Kowalski, Spectral transformation of infrared
ultrashort pulses in laser crystals, Opt. Mater.
36,
1745–1748 (2014),
https://doi.org/10.1016/j.optmat.2014.03.017
[223] R.S.S. Kumar, K.L.N. Deepak, and D.N. Rao, Control of the
polarization properties of the supercontinuum generation in a
noncentrosymmetric crystal, Opt. Lett.
33, 1198–1200
(2008),
https://doi.org/10.1364/OL.33.001198
[224] R.S.S. Kumar, K.L.N. Deepak, and D.N. Rao, Depolarization
properties of the femtosecond supercontinuum generated in
condensed media, Phys. Rev. A
78, 043818 (2008),
https://doi.org/10.1103/PhysRevA.78.043818
[225] J. Yu, H. Jiang, H. Yang, and Q. Gong, Depolarization of
white light generated by femtosecond laser pulse in KDP
crystals, J. Opt. Soc. Am. B
28, 1566–1570 (2011),
https://doi.org/10.1364/JOSAB.28.001566
[226] J. Rolle, L. Bergé, G. Duchateau, and S. Skupin,
Filamentation of ultrashort laser pulses in silica glass and KDP
crystals: A comparative study, Phys. Rev. A
90, 023834
(2014),
https://doi.org/10.1103/PhysRevA.90.023834
[227] Y. Wang, H. Ni, W. Zhan, J. Yuan, and R. Wang,
Supercontinuum and THz generation from Ni implanted LiNbO
3
under 800 nm laser excitation, Opt. Commun.
291, 334–336
(2013),
https://doi.org/10.1016/j.optcom.2012.11.007
[228] P. Vasa, K. Dota, M. Singh, D. Kushavah, B.P. Singh, and
D. Mathur, Power- and polarization-dependent supercontinuum
generation in
α-BaB
2O
4 crystals by
intense, near-infrared, femtosecond laser pulses, Phys. Rev. A
91,
053837 (2015),
https://doi.org/10.1103/PhysRevA.91.053837
[229] N.K.M.N. Srinivas, S.S. Harsha, and D.N. Rao, Femtosecond
supercontinuum generation in a quadratic nonlinear medium (KDP),
Opt. Express
13, 3224–3229 (2005),
https://doi.org/10.1364/OPEX.13.003224
[230] R.S.S. Kumar, S.S. Harsha, and D.N. Rao, Broadband
supercontinuum generation in a single potassium di-hydrogen
phosphate (KDP) crystal achieved in tandem with sum frequency
generation, Appl. Phys. B
86, 615–621 (2007),
https://doi.org/10.1007/s00340-006-2519-0
[231] L. Wang, Y.X. Fan, H. Zhu, Z.D. Yan, H. Zeng, H.-T. Wang,
S.N. Zhu, and Z.L. Wang, Broadband colored-crescent generation
in a single
β-barium-borate crystal by intense
femtosecond pulses, Phys. Rev. A
84, 063831 (2011),
https://doi.org/10.1103/PhysRevA.84.063831
[232] S.A. Ali, P.B. Bisht, A. Nautiyal, V. Shukla, K.S. Bindra,
and S.M. Oak, Conical emission in
β-barium borate under
femtosecond pumping with phase matching angles away from second
harmonic generation, J. Opt. Soc. Am. B
27, 1751–1756
(2010),
https://doi.org/10.1364/JOSAB.27.001751
[233] G.I. Stegeman, D.J. Hagan, and L. Torner, χ
(2)
cascading phenomena and their applications to all-optical signal
processing, mode-locking, pulse compression and solitons, Opt.
Quant. Electron.
28, 1691–1740 (1996),
https://doi.org/10.1007/BF00698538
[234] M. Conforti, F. Baronio, and C. De Angelis, Modeling of
ultrabroadband and single-cycle phenomena in anisotropic
quadratic crystals, J. Opt. Soc. Am. B
28, 1231–1237
(2011),
https://doi.org/10.1364/JOSAB.28.001231
[235] M. Conforti and F. Baronio, Extreme high-intensity and
ultrabroadband interactions in anisotropic
β-BaB
2O
4
crystals, J. Opt. Soc. Am. B
30, 1041–1047 (2013),
https://doi.org/10.1364/JOSAB.30.001041
[236] B.B. Zhou, A. Chong, F.W. Wise, and M. Bache, Ultrafast
and octave-spanning optical nonlinearities from strongly
phase-mismatched quadratic interactions, Phys. Rev. Lett.
109,
043902 (2012),
https://doi.org/10.1103/PhysRevLett.109.043902
[237] M. Bache, H. Guo, and B. Zhou, Generating mid-IR
octave-spanning supercontinua and few-cycle pulses with solitons
in phase-mismatched quadratic nonlinear crystals, Opt. Mater.
Express
3, 1647–1657 (2013),
https://doi.org/10.1364/OME.3.001647
[238] B. Zhou, H. Guo, and M. Bache, Energetic mid-IR
femtosecond pulse generation by self-defocusing soliton-induced
dispersive waves in a bulk quadratic nonlinear crystal, Opt.
Express.
23, 6924–6936 (2015),
https://doi.org/10.1364/OE.23.006924
[239] B. Zhou and M. Bache, Dispersive waves induced by
self-defocusing temporal solitons in a beta-barium-borate
crystal, Opt. Lett.
40, 4257– 4260 (2015),
https://doi.org/10.1364/OL.40.004257
[240] B. Zhou and M. Bache, Multiple-octave spanning mid-IR
supercontinuum generation in bulk quadratic nonlinear crystals,
APL Photon.
1, 050802 (2016),
https://doi.org/10.1063/1.4953177
[241] K. Krupa, A. Labruyère, A. Tonello, B.M. Shalaby, V.
Couderc, F. Baronio, and A.B. Aceves, Polychromatic filament in
quadratic media: spatial and spectral shaping of light in
crystals, Optica
2, 1058–1064 (2015),
https://doi.org/10.1364/OPTICA.2.001058
[242] R. Šuminas, G. Tamošauskas, V. Jukna, A. Couairon, and A.
Dubietis, Second-order cascading-assisted filamentation and
controllable supercontinuum generation in birefringent crystals,
Opt. Express
25, 6746–6756 (2017),
https://doi.org/10.1364/OE.25.006746
[243] C. Vicario, B. Monoszlai, G. Arisholm, and C.P. Hauri,
Generation of 1.5-octave intense infrared pulses by nonlinear
interactions in DAST crystal, J. Opt.
17, 094005 (2015),
https://doi.org/10.1088/2040-8978/17/9/094005
[244] A. Kessel, S.A. Trushin, N. Karpowicz, C. Skrobol, S.
Klingebiel, C. Wandt, and S. Karsch, Generation of multi-octave
spanning high-energy pulses by cascaded nonlinear processes in
BBO, Opt. Express
24, 5628–5637 (2016),
https://doi.org/10.1364/OE.24.005628
[245] A.H. Chin, O.G. Calderón, and J. Kono, Extreme midinfrared
nonlinear optics in semiconductors, Phys. Rev. Lett.
86,
3292–3295 (2001),
https://doi.org/10.1103/PhysRevLett.86.3292
[246] P.B. Corkum, P.P. Ho, R.R. Alfano, and J.T. Manassah,
Generation of infrared supercontinuum covering 3–14 μm in
dielectrics and semiconductors, Opt. Lett.
10, 624–626
(1985),
https://doi.org/10.1364/OL.10.000624
[247] J.J. Pigeon, S.YA. Tochitsky, C. Gong, and C. Joshi,
Supercontinuum generation from 2 to 20 μm in GaAs pumped by
picosecond CO
2 laser pulses, Opt. Lett.
39,
3246–3249 (2014),
https://doi.org/10.1364/OL.39.003246
[248] S. Ashihara and Y. Kawahara, Spectral broadening of
mid-infrared femtosecond pulses in GaAs, Opt. Lett.
34,
3839–3841 (2009),
https://doi.org/10.1364/OL.34.003839
[249] A.A. Lanin, A.A. Voronin, E.A. Stepanov, A.B. Fedotov, and
A.M. Zheltikov, Frequency-tunable sub-two-cycle 60-MW-peak-power
free-space waveforms in the mid-infrared, Opt. Lett.
39,
6430–6433 (2014),
https://doi.org/10.1364/OL.39.006430
[250] A.A. Lanin, A.A. Voronin, E.A. Stepanov, A.B. Fedotov, and
A.M. Zheltikov, Multioctave, 3–18 μm sub-two-cycle supercontinua
from self-compressing, self-focusing soliton transients in a
solid, Opt. Lett.
40, 974–977 (2015),
https://doi.org/10.1364/OL.40.000974
[251] M. Durand, A. Houard, K. Lim, A. Durécu, O. Vasseur, and
M. Richardson, Study of filamentation threshold in zinc
selenide, Opt. Express
22, 5852–5858 (2014),
https://doi.org/10.1364/OE.22.005852
[252] O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F.
Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala,
Filament-induced visible-to-mid-IR supercontinuum in a ZnSe
crystal: Towards multi-octave supercontinuum absorption
spectroscopy, Opt. Mater.
60, 355– 358 (2016),
https://doi.org/10.1016/j.optmat.2016.08.009
[253] R. Šuminas, G. Tamošauskas, G. Valiulis, V. Jukna, A.
Couairon, and A. Dubietis, Multi-octave spanning nonlinear
interactions induced by femtosecond filamentation in
polycrystalline ZnSe, Appl. Phys. Lett.
110, 241106
(2017),
https://doi.org/10.1063/1.4986440
[254] M. Baudrier-Raybaut, R. Häıdar, Ph. Kupecek, Ph. Lemasson,
and E. Rosencher, Random quasi-phase-matching in bulk
polycrystalline isotropic nonlinear materials, Nature
432,
374–376 (2004),
https://doi.org/10.1038/nature03027
[255] A.S. Sandhu, S. Banerjee, and D. Goswami, Suppression of
supercontinuum generation with circularly polarized light, Opt.
Commun.
181, 101–107 (2000),
https://doi.org/10.1016/S0030-4018(00)00752-5
[256] A. Srivastava and A. Goswami, Control of supercontinuum
generation with polarization of incident laser pulses, Appl.
Phys. B
77, 325–328 (2003),
https://doi.org/10.1007/s00340-003-1243-2
[257] D. Schumacher, Controlling continuum generation, Opt.
Lett.
27, 451–453 (2002),
https://doi.org/10.1364/OL.27.000451
[258] J.A. Dharmadhikari, A.K. Dharmadhikari, K. Dota, and D.
Mathur, Influencing supercontinuum generation by phase
distorting an ultrashort laser pulse, Opt. Lett.
40,
241–243 (2015),
https://doi.org/10.1364/OL.40.000241
[259] J.V. Thompson, P.A. Zhokhov, M.M. Springer, A.J. Traverso,
V.V. Yakovlev, A.M. Zheltikov, A.V. Sokolov, and M.O. Scully,
Amplitude concentration in a phase-modulated spectrum due to
femtosecond filamentation, Sci. Rep.
7, 43367 (2017),
https://doi.org/10.1038/srep43367
[260] V. Kartazaev and R.R. Alfano, Supercontinuum generated in
calcite with chirped femtosecond pulses, Opt. Lett.
32,
3293–3295 (2007),
https://doi.org/10.1364/OL.32.003293
[261] K. Wang, L. Qian, H. Luo, P. Yuan, and H. Zhu, Ultrabroad
supercontinuum generation by femtosecond dual-wavelength pumping
in sapphire, Opt. Express
14, 6366–6371 (2006),
https://doi.org/10.1364/OE.14.006366
[262] A.A. Kolomenskii, J. Strohaber, N. Kaya, G. Kaya, A.V.
Sokolov, and H.A. Schuessler, White-light generation control
with crossing beams of femtosecond laser pulses, Opt. Express
24,
282–293 (2016),
https://doi.org/10.1364/OE.24.000282
[263] K. Stelmaszczyk, P. Rohwetter, Y. Petit, M. Fechner, J.
Kasparian, J.-P. Wolf, and L. Wöste, White-light symmetrization
by the interaction of multifilamenting beams, Phys. Rev. A
79,
053856 (2009),
https://doi.org/10.1103/PhysRevA.79.053856
[264] C. Romero, R. Borrego-Varillas, A. Camino, G.
Mínguez-Vega, O. Mendoza-Yero, J. Hernández-Toro, and J. R.
Vázquez de Aldana, Diffractive optics for spectral control of
the supercontinuum generated in sapphire with femtosecond
pulses, Opt. Express
19, 4977–4984 (2011),
https://doi.org/10.1364/OE.19.004977
[265] R. Borrego-Varillas, C. Romero, O. Mendoza-Yero, G.
Mínguez-Vega, I. Gallardo, and J. R. Vázquez de Aldana,
Femtosecond filamentation in sapphire with diffractive lenses,
J. Opt. Soc. Am. B
30, 2059–2065 (2013),
https://doi.org/10.1364/JOSAB.30.002059
[266] N. Kaya, J. Strohaber, A.A. Kolomenskii, G. Kaya, H.
Schroeder, and H.A. Schuessler, White-light generation using
spatially-structured beams of femtosecond radiation, Opt.
Express
20, 13337–13346 (2012),
https://doi.org/10.1364/OE.20.013337
[267] R. Borrego-Varillas, J. Perez-Vizcaino, O. Mendoza-Yero,
G. Minguez-Vega, J.R.V. de Aldana, and J. Lancis, Controlled
multibeam supercontinuum generation with a spatial light
modulator, IEEE Photon. Technol. Lett.
26, 1661–1664
(2014),
https://doi.org/10.1109/LPT.2014.2330362
[268] Y. Zhong, H. Diao, Z. Zeng, Y. Zheng, X. Ge, R. Li, and Z.
Xu, CEP-controlled supercontinuum generation during
filamentation with mid-infrared laser pulse, Opt. Express
22,
29170–29178 (2014),
https://doi.org/10.1364/OE.22.029170
[269] T. Jimbo, V.L. Caplan, Q.X. Li, Q.Z. Wang, P.P. Ho, and
R.R. Alfano, Enhancement of ultrafast supercontinuum generation
in water by the addition of Zn
2+ and K
+
cations, Opt. Lett.
12, 477–479 (1977),
https://doi.org/10.1364/OL.12.000477
[270] C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Femtosecond
filamentation and supercontinuum generation in
silver-nanoparticle-doped water, Appl. Phys. Lett.
90,
181119 (2007),
https://doi.org/10.1063/1.2736212
[271] P. Vasa, M. Singh, R. Bernard, A.K. Dharmadhikari, J.A.
Dharmadhikari, and D. Mathur, Supercontinuum generation in water
doped with gold nanoparticles, Appl. Phys. Lett.
103,
111109 (2013),
https://doi.org/10.1063/1.4820910
[272] R. Driben, A. Husakou, and J. Herrmann, Supercontinuum
generation in aqueous colloids containing silver nanoparticles,
Opt. Lett.
34, 2132–2134 (2009),
https://doi.org/10.1364/OL.34.002132
[273] Y.N. Kulchin, S.S. Golik, D.Y. Proschenko, A.A.
Chekhlenok, I.V. Postnova, A.Y. Mayor, and Y.A. Shchipunov,
Supercontinuum generation and filamentation of ultrashort laser
pulses in hybrid silicate nanocomposite materials on the basis
of polysaccharides and hyperbranched polyglycidols, Quant.
Electron.
43, 370–373 (2013),
https://doi.org/10.1070/QE2013v043n04ABEH015116
[274] L. Wang, Y.-X. Fan, Z.-D. Yan, H.-T. Wang, and Z.-L. Wang,
Flat-plateau supercontinuum generation in liquid absorptive
medium by femtosecond filamentation, Opt. Lett.
35,
2925–2927 (2010),
https://doi.org/10.1364/OL.35.002925
[275] C. Santhosh, A.K. Dharmadhikari, J.A. Dharmadhikari, K.
Alti, and D. Mathur, Supercontinuum generation in macromolecular
media, Appl. Phys. B
99, 427–432 (2010),
https://doi.org/10.1007/s00340-010-3903-3
[276] D. Paipulas, A. Balskienė, and V. Sirutkaitis,
Experimental study of filamentation and supercontinuum
generation in laser-modified fused silica, Lith. J. Phys.
52,
327–333 (2012),
https://doi.org/10.3952/physics.v52i4.2571
[277] C. Rolland and P.B. Corkum, Compression of high-power
optical pulses, J. Opt. Soc. Am. B
5, 641–647 (1988),
https://doi.org/10.1364/JOSAB.5.000641
[278] E. Mével, O. Tcherbakoff, F. Salin, and E. Constant,
Extracavity compression technique for high-energy femtosecond
pulses, J. Opt. Soc. Am. B
20, 105–108 (2003),
https://doi.org/10.1364/JOSAB.20.000105
[279] C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng,
S.-D. Yang, M.-C. Chen, C.-C. Hsu, and A. H. Kung, Generation of
intense supercontinuum in condensed media, Optica
1,
400–406 (2014),
https://doi.org/10.1364/OPTICA.1.000400
[280] Y.-C. Cheng, C.-H. Lu, Y.-Y. Lin, and A.H. Kung,
Supercontinuum generation in a multi-plate medium, Opt. Express
24, 7224–7231 (2016),
https://doi.org/10.1364/OE.24.007224
[281] M. Seidel, G. Arisholm, J. Brons, V. Pervak, and O.
Pronin, All solid-state spectral broadening: an average and peak
power scalable method for compression of ultrashort pulses, Opt.
Express
24, 9412–9428 (2016),
https://doi.org/10.1364/OE.24.009412
[282] P. He, Y. Liu, K. Zhao, H. Teng, X. He, P. Huang, H.
Huang, S. Zhong, Y. Jiang, S. Fang, X. Hou, and Z. Wei,
High-efficiency supercontinuum generation in solid thin plates
at 0.1 TW level, Opt. Lett.
42, 474–477 (2017),
https://doi.org/10.1364/OL.42.000474
[283] R. Budriūnas, D. Kučinskas, and A. Varanavičius,
High-energy continuum generation in an array of thin plates
pumped by tunable femtosecond IR pulses, Appl. Phys. B
123,
212 (2017),
https://doi.org/10.1007/s00340-017-6785-9
[284] A.A. Voronin, A.M. Zheltikov, T. Ditmire, B. Rus, and G.
Korn, Subexawatt few-cycle light wave generation via
multipetawatt pulse compression, Opt. Commun.
291,
299–303 (2013),
https://doi.org/10.1016/j.optcom.2012.10.057
[285] M. Hemmer, M. Baudisch, A. Thai, A. Couairon, and J.
Biegert, Self-compression to sub-3-cycle duration of
mid-infrared optical pulses in dielectrics, Opt. Express
21,
28095–28102 (2013),
https://doi.org/10.1364/OE.21.028095
[286] M. Baudisch, H. Pires, H. Ishizuki, T. Taira, M. Hemmer,
and J. Biegert, Sub-4-optical-cycle, 340 MW peak power, high
stability mid-IR source at 160 kHz, J. Opt.
17, 094002
(2015),
https://doi.org/10.1088/2040-8978/17/9/094002
[287] B.G. Bravy, V.M. Gordienko, and V.T. Platonenko, Kerr
effect-assisted self-compression in dielectric to single-cycle
pulse width and to terawatt power level in mid-IR, Opt. Commun.
344, 7–11 (2015),
https://doi.org/10.1016/j.optcom.2015.01.036
[288] B.G. Bravy, V.M. Gordienko, and V.T. Platonenko,
Self-compression of terawatt level picosecond 10 μm laser pulses
in NaCl, Laser Phys. Lett.
11, 065401 (2014),
https://doi.org/10.1088/1612-2011/11/6/065401
[289] W. Li, Y. Li, Y. Xu, X. Guo, J. Lu, P. Wang, and Y. Leng,
Design and simulation of a single-cycle source tunable from 2 to
10 micrometers, Opt. Express
25, 7101–7111 (2017),
https://doi.org/10.1364/OE.25.007101
[290] A.A. Voronin and A.M. Zheltikov, Asymptotically
one-dimensional dynamics of high-peak-power ultrashort laser
pulses, J. Opt.
18, 115501 (2016),
https://doi.org/10.1088/2040-8978/18/11/115501
[291] A.A. Voronin and A.M. Zheltikov, Pulse self-compression to
single-cycle pulse widths a few decades above the selffocusing
threshold, Phys. Rev. A
94, 023824 (2016),
https://doi.org/10.1103/PhysRevA.94.023824
[292] V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A.M.
Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys,
Multi-millijoule few-cycle mid-infrared pulses through nonlinear
self-compression in bulk, Nat. Commun.
7, 12877 (2016),
https://doi.org/10.1038/ncomms12877
[293] N. Garejev, V. Jukna, G. Tamošauskas, M. Veličkė, R.
Šuminas, A. Couairon, and A. Dubietis, Odd harmonics-enhanced
supercontinuum in bulk solid-state dielectric medium, Opt.
Express
24, 17060–17068 (2016),
https://doi.org/10.1364/OE.24.017060
[294] E.A. Stepanov, A.A. Lanin, A.A. Voronin, A.B. Fedotov, and
A.M. Zheltikov, Solid-state source of subcycle pulses in the
midinfrared, Phys. Rev. Lett.
117, 043901 (2016),
https://doi.org/10.1103/PhysRevLett.117.043901
[295] T.M. Kardaś, B. Ratajska-Gadomska, W. Gadomski, A. Lapini,
and R. Righini, The role of stimulated Raman scattering in
supercontinuum generation in bulk diamond, Opt. Express
21,
24201–24209 (2013),
https://doi.org/10.1364/OE.21.024201
[296] S.A. Frolov, V.I. Trunov, V.E. Leshchenko, and E.V.
Pestryakov, Multi-octave supercontinuum generation with IR
radiation filamentation in transparent solid-state media, Appl.
Phys. B
122, 124 (2016),
https://doi.org/10.1007/s00340-016-6398-8
[297] E. Mareev, V. Bagratashvili, N. Minaev, F. Potemkin, and
V. Gordienko, Generation of an adjustable multi-octave
supercontinuum under near-IR filamentation in gaseous,
supercritical, and liquid carbon dioxide, Opt. Lett.
41,
5760–5763 (2016),
https://doi.org/10.1364/OL.41.005760
[298] A. Dubietis, P. Polesana, G. Valiulis, A. Stabinis, P. Di
Trapani, and A. Piskarskas, Axial emission and spectral
broadening in self-focusing of femtosecond Bessel beams, Opt.
Express
15, 4168–4175 (2007),
https://doi.org/10.1364/OE.15.004168
[299] X. Sun, H. Gao, B. Zeng, S. Xu, W. Liu, Y. Cheng, Z. Xu,
and G. Mu, Multiple filamentation generated by focusing
femtosecond laser with axicon, Opt. Lett.
37, 857–859
(2012),
https://doi.org/10.1364/OL.37.000857
[300] K. Dota, A. Pathak, J.A. Dharmadhikari, D. Mathur, and
A.K. Dharmadhikari, Femtosecond laser filamentation in condensed
media with Bessel beams, Phys. Rev. A
86, 023808 (2012),
https://doi.org/10.1103/PhysRevA.86.023808
[301] K. Dota, J.A. Dharmadhikari, D. Mathur, and A.K.
Dharmadhikari, Supercontinuum generation in barium fluoride
using Bessel beams, Chin. J. Phys.
52, 431–439 (2014),
[PDF]
[302] P. Polynkin, M. Kolesik, and J. Moloney, Filamentation of
femtosecond laser Airy beams in water, Phys. Rev. Lett.
103,
123902 (2009),
https://doi.org/10.1103/PhysRevLett.103.123902
[303] C. Ament, M. Kolesik, J.V. Moloney, and P. Polynkin,
Self-focusing dynamics of ultraintense accelerating Airy
waveforms in water, Phys. Rev. A
86, 043842 (2012),
https://doi.org/10.1103/PhysRevA.86.043842
[304] C. Gong, Z. Li, L.Q. Hua, W. Quan, and X.J. Liu,
Angle-resolved conical emission spectra from filamentation in a
solid with an Airy pattern and a Gaussian laser beam, Opt. Lett.
41, 4305– 4308 (2016),
https://doi.org/10.1364/OL.41.004305
[305] D.N. Neshev, A. Dreischuh, G. Maleshkov, M. Samoc, and
Y.S. Kivshar, Supercontinuum generation with optical vortices,
Opt. Express
18, 18368–18373 (2010),
https://doi.org/10.1364/OE.18.018368
[306] G. Maleshkov, D.N. Neshev, E. Petrova, and A. Dreischuh,
Filamentation and supercontinuum generation by singular beams in
self-focusing nonlinear media, J. Opt.
13, 064015
(2011),
https://doi.org/10.1088/2040-8978/13/6/064015
[307] H. Fattahi, H.G. Barros, M. Gorjan, T. Nubbemeyer, B.
Alsaif, C.Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M.
Ueffing, et al., Third-generation femtosecond technology, Optica
1, 45–63 (2014),
https://doi.org/10.1364/OPTICA.1.000045