Received 4 April 2017; revised 18 May 2017; accepted 15 June 2017
NAUJOS HARMONINIO OSCILIATORIAUS
BAZĖS TAIKYMO GALIMYBĖS, SKAIČIUOJANT KULONINĖS TRIJŲ
NETAPATINGŲ DALELIŲ SISTEMOS PAGRINDINĖS BŪSENOS ENERGIJĄ
Kvazireliatyvistinis Hartrio ir Foko artinys
panaudotas tiriant radiacinių šuolių savybes volframo jonuose W38+–W43+
su atviru 4p sluoksniu. Konfigūracijų sąveikos artėjimas
pritaikytas koreliaciniams efektams įskaityti naudojant
transformuotųjų radialiųjų orbitalių bazę. Darbe pateikiamos
konfigūracijų 4s24pN, 4s24pN-14d
ir 4s4pN+1 lygmenų energijos, jų radiacinės
gyvavimo trukmės τ, Landé g-daugikliai bei
įvairių tipų (E1, E2, E3, M1 ir M2) savaiminių šuolių bangų
ilgiai ir emisijos šuolių tikimybės. Gautos šuolių
charakteristikos palygintos su eksperimentiniais ir kitų autorių
teoriniais duomenimis. Kartu pateikiami teorinių bangų ilgių
neapibrėžtumai ir iš jų kylantys šuolių tikimybių
neapibrėžtumai.
References
/
Nuorodos
[1] J. Reader, Spectral
data for fusion energy: from W to W, Phys. Scr.
T134,
014023 (2009),
https://doi.org/10.1088/0031-8949/2009/T134/014023
[2] C. Skinner, Atomic physics in the quest for fusion energy
and ITER, Phys. Scr.
T134, 014022 (2009),
https://doi.org/10.1088/0031-8949/2009/T134/014022
[3] P. Beiersdorfer, J. Clementson, and U.I. Safronova, Tungsten
data for current and future uses in fusion and plasma science,
Atoms
3, 260–272 (2015),
https://doi.org/10.3390/atoms3020260
[4] Z. Wu, Y. Fu, X. Ma, M. Li, L. Xie, J. Jiang, and C. Dong,
Electron impact excitation and dielectronic recombination of
highly charged tungsten ions, Atoms
3, 474–494 (2015),
https://doi.org/10.3390/atoms3040474
[5] P. Bogdanovich and R. Kisielius, Theoretical energy level
spectra and transition data for 4p
64d, 4p
64f
and 4p
54d
2 configurations of W
37+
ion, At. Data Nucl. Data Tables
98, 557–565 (2012),
https://doi.org/10.1016/j.adt.2011.11.004
[6] P. Bogdanovich and R. Kisielius, Theoretical energy level
spectra and transition data for 4p
64d
2, 4p
64d4f,
and 4p
54d
3 configurations of W
36+,
At. Data Nucl. Data Tables
99, 580–594 (2013),
https://doi.org/10.1016/j.adt.2012.11.001
[7] P. Bogdanovich, R. Karpuškienė, and R. Kisielius,
Quasirelativistic calculation of 4s
24p
5,
4s
24p
44d and 4s4p
6
configuration spectroscopic parameters for the W
39+
ion, Phys. Scr.
90, 035401 (2015),
https://doi.org/10.1088/0031-8949/90/3/035401
[8] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team,
NIST
Atomic Spectra Database, Version 5.3 (National Institute
of Standards and Technology, Gaithersburg, MD, USA, 2015),
https://physics.nist.gov/asd
[9] S.B. Utter, P. Beiersdorfer, and E. Träbert, Electron-beam
ion-trap spectra of tungsten in the EUV, Can. J. Phys.
80,
1503–1515 (2002),
https://doi.org/10.1139/p02-132
[10] R. Radtke, C. Biedermann, G. Fussmann, J.L. Schwob, P.
Mandelbaum, and R. Doron, Measured line spectra and calculated
atomic physics data for highly charged tungsten ions, in:
Atomic
and Plasma-Material Interaction Data for Fusion, Vol. 13,
ed. R.E.H. Clark (International Atomic Energy Agency, Vienna,
2007) pp. 45–66,
http://www-pub.iaea.org/books/IAEABooks/7774/Atomic-and-Plasma-Material-Interaction-Data-for-Fusion
[11] K.M. Aggarwal and F.P. Keenan, Energy levels, radiative
rates, and lifetimes for transitions in W XL, At. Data Nucl.
Data Tables
100, 1399–1518 (2014),
https://doi.org/10.1016/j.adt.2014.02.006
[12] C. Froese Fischer, Evaluation and comparison of the
configuration interaction calculations for complex atoms, Atoms
2, 1–14 (2014),
https://doi.org/10.3390/atoms2010001
[13] P. Bogdanovich, R. Karpuškienė, and R. Kisielius, Energy
spectra of the tungsten ion 4s
24p
N,
4s
24p
N–14d and 4s4p
N+1
configurations, Lith. J. Phys.
55, 162 (2015),
https://doi.org/10.3952/physics.v55i3.3145
[14] K.B. Fournier, Atomic data and spectral line intensities
for highly ionized tungsten (Co-like W
47+ to Rb-like
W
37+) in a high-temperature, low-density plasma, At.
Data Nucl. Data Tables
68, 1–48 (1998),
https://doi.org/10.1006/adnd.1997.0756
[15] P. Quinet, A theoretical survey of atomic structure and
forbidden transitions in the 4p
k and 4d
k
ground configurations of tungsten ions W
29+ through W
43+,
J. Phys. B 45, 025003 (2012),
https://doi.org/10.1088/0953-4075/45/2/025003
[16] P. Quinet, É. Biémont, P. Palmeri, and E. Träbert,
Multiconfiguration Dirac–Fock wavelengths and transition rates
in the X-ray spectra of highly charged Ga-like ions from Yb
39+
to U
61+, At. Data Nucl. Data Tables
93,
167–182 (2007),
https://doi.org/10.1016/j.adt.2006.09.001
[17] F. Hu, C. Wang, J. Yang, G. Jiang, and L. Hao,
Multiconfiguration Dirac–Fock calculations of transition
probabilities of some tungsten ions, Phys. Scr.
84,
015302 (2011),
https://doi.org/10.1088/0031-8949/84/01/015302
[18] L.-H. Hao and X.-P. Kang, Energy levels and spectral lines
in the X-ray spectra of highly charged W XLIV, Eur. Phys. J. D
68,
203 (2014),
https://doi.org/10.1140/epjd/e2014-50056-0
[19] J. Clementson, P. Beiersdorfer, T. Brage, and M.F. Gu,
Atomic data and theoretical X-ray spectra of Ge-like through
V-like W ions, At. Data Nucl. Data Tables
100, 577–649
(2014),
https://doi.org/10.1016/j.adt.2013.07.002
[20] G. Gaigalas, P. Rynkun, and C. Froese Fischer, Lifetimes of
4
p54
d levels in highly ionized atoms,
Phys. Rev. A
91, 022509 (2015),
https://doi.org/10.1103/PhysRevA.91.022509
[21] A. Kramida, Critical evaluation of data on atomic energy
levels, wavelengths, and transition probabilities, Fusion Sci.
Technol.
63, 313323 (2013),
https://doi.org/10.13182/FST13-A16437
[22] A. Kramida, Assessing uncertainties of theoretical atomic
transition probabilities with Monte Carlo random trials, Atoms
2,
86–122 (2014),
https://doi.org/10.3390/atoms2020086
[23] P. Bogdanovich and O. Rancova, Quasirelativistic approach
for ab initio study of highly charged ions, Phys. Scr.
78,
045301 (2008),
https://doi.org/10.1088/0031-8949/78/04/045301
[24] P. Bogdanovich and O. Rancova, Quasirelativistic
Hartree–Fock equations consistent with Breit–Pauli approach,
Phys. Rev. A
74(5), 052501 (2006),
https://doi.org/10.1103/PhysRevA.74.052501
[25] P. Bogdanovich and O. Rancova, Adjustment of the
quasirelativistic equations for p electrons, Phys. Rev. A
76,
012507 (2007),
https://doi.org/10.1103/PhysRevA.76.012507
[26] P. Bogdanovich and R. Karpuškienė, Numerical methods of the
preliminary evaluation of the role of admixed configurations in
atomic calculations, Comp. Phys. Comm.
134, 321–334
(2001),
https://doi.org/10.1016/S0010-4655(00)00214-9
[27] P. Bogdanovich, R. Karpuškienė, and A. Momkauskaitė, Some
problems of calculation of energy spectra of complex atomic
configurations, Comput. Phys. Commun.
143, 174–180
(2002),
https://doi.org/10.1016/S0010-4655(01)00446-5
[28] A. Hibbert, R. Glass, and C. Froese Fischer, A general
program for computing angular integrals of the Breit–Pauli
Hamiltonian, Comput. Phys. Commun.
64, 445–472 (1991),
https://doi.org/10.1016/0010-4655(91)90138-B
[29] C. Froese Fischer, M.R. Godefroid, and A. Hibbert, A
program for performing angular integrations for transition
operators, Comput. Phys. Commun.
64, 486–500 (1991),
https://doi.org/10.1016/0010-4655(91)90140-G
[30] C. Froese Fischer and M.R. Godefroid, Programs for
computing
LS and
LSJ transitions from MCHF wave
functions, Comput. Phys. Commun.
64, 501–519 (1991),
https://doi.org/10.1016/0010-4655(91)90141-7
[31] R. Karpuškienė, P. Bogdanovich, and R. Kisielius,
Significance of
M2 and
E3 transitions for 4
p54
dN+1-
and 4
p64
dN–14
f-configuration
metastable-level lifetimes, Phys. Rev. A
88, 022519
(2013),
https://doi.org/10.1103/PhysRevA.88.022519
[32] A. Bar-Shalom, M. Klapisch, and J. Oreg, Electron collision
excitations in complex spectra of ionized heavy atoms, Phys.
Rev. A
38, 1773–1784 (1988),
https://doi.org//10.1103/PhysRevA.38.1773