[PDF]    https://doi.org/10.3952/physics.v57i3.3543

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 183–193 (2017)


PREPARATION, STRUCTURE, SURFACE AND IMPEDANCE ANALYSIS OF Na2Zn0.5Mn0.5P2O7 CERAMICS
Vilma Venckutėa, Antonija Dinduneb, Dagnija Valdnieceb, Aija Kruminab, Martynas Lelisc, Vitalija Jasulaitienėd, Andrius Maneikisd, Saulius Daugėlaa, Tomas Šalkusa, Algimantas Kežionisa, and Antanas Feliksas Orliukasa
aFaculty of Physics, Vilnius University, Saulėtekio 9/3, LT-10222 Vilnius, Lithuania
bInstitute of Inorganic Chemistry, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia
cCenter for Hydrogen Energy Technologies, Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania
dNational Center for Physical Sciences and Technology, Saulėtekio 3, LT-10222 Vilnius, Lithuania
E-mail: saulius.daugela@ff.vu.lt

Received 16 March 2017; revised 15 May 2017; accepted 15 June 2017

The Na2Zn0.5Mn0.5P2O7 powder was prepared by the solid state reaction method. The powder structure was studied by X-ray diffraction (XRD) in the temperature range from room temperature (RT) to 520 K. The results of XRD measurements show that the obtained Na2Zn0.5Mn0.5P2O7 is a mixture of two phases: Na2MnP2O7, which crystallizes in the triclinic space group P1¯\overline{1}, and Na2ZnP2O7, which crystallizes in the tetragonal space group P42/mmm. The chemical compositions of the powder and ceramic samples were investigated by an energy dispersive X-ray spectrometer (EDX) and X-ray fluorescence spectroscopy (XFS). The surface of ceramics was examined by X-ray photoelectron spectroscopy (XPS). The electrical conductivity and dielectric permittivity of the ceramics were investigated from RT to 700 K in the frequency range 10–109 Hz. The relaxational dispersion of electrical conductivity in the investigated frequency and temperature range was found.
Keywords: sodium, pyrophosphate, crystal structure, conductivity, dielectric permittivity
PACS: 82.45.Xy, 84.37.+q, 79.60.-i

Na2Zn0,5Mn0,5P2O7 KERAMIKOS GAMYBA BEI STRUKTŪROS, PAVIRŠIAUS IR IMPEDANSO SPEKTROSKOPIJOS TYRIMAI

Vilma Venckutėa, Antonija Dinduneb, Dagnija Valdnieceb, Aija Krūmiņab, Martynas Lelisc, Vitalija Jasulaitienėd, Andrius Maneikisd, Saulius Daugėlaa, Tomas Šalkusa, Algimantas Kežionisa, Antanas Feliksas Orliukasa
aVilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
bRygos technikos universiteto Neorganinės chemijos institutas, Ryga, Latvija
cLietuvos energetikos instituto Vandenilio energetikos technologijų centras, Kaunas, Lietuva
dFizinių ir technologijos mokslų centras, Vilnius, Lietuva

Darbe Na2Zn0,5Mn0,5P2O7 milteliai buvo sintezuoti kietųjų fazių reakcijos metodu. XRD analizė parodė, kad Na2Zn0,5Mn0,5P2O7 susideda iš dviejų fazių: triklininės Na2MnP2O7 (erdvinė grupė P1¯\overline{1}) ir tetragoninės Na2ZnP2O7 (erdvinė grupė P42/mmm). Skaičiuojant pagal masę gautos koncentracijos atitinkamai 38,64 ir 61,36 %. Cheminė miltelių ir iškeptos keramikos sudėtis tyrinėta EDX bei XFS spektroskopijos būdais. Paviršius tyrinėtas XPS spektrometru. Kaip parodė SEM nuotrauka, Na2Zn0,5Mn0,5P2O7 keramikos kristalitų dydžiai varijuoja nuo 3 iki 21 μm.
Bandinėliai matuoti impedansą gauti keramikos miltelius suspaudžiant į tabletes 200 MPa slėgiu. Na2Zn0,5Mn0,5P2O7 keramikos kepinimo temperatūra 953 K, trukmė – 2 h. Gautos keramikos tankis – 2,73 g/cm3. Impedanso spektroskopijai matuoti ant cilindro formos bandinėlių uždėta platinos pasta ir atkaitinta 920 K temperatūroje.
Atliekant impedanso matavimus, realiosios laidumo dalies priklausomybė nuo dažnio Na2Zn0,5Mn0,5P2O7 keramikoje rodo dispersijos sritį, kuri pasislenka į aukštesnių dažnių pusę kylant temperatūrai nuo 350 iki 700 K. Tai yra tipiška relaksacinio tipo dispersija. Laidumo dispersija per 350 K siejama su Na+ jonų pernaša keramikos granulėse. Intervale nuo 300 iki 360 K fiksuotas nukrypimas nuo Arenijaus dėsnio. Kaitinimo stadijos metu kylant temperatūrai nuo 300 iki 350 K mažėjo laidumas. Tai susiję su vandens pasišalinimu iš keramikos. Panaši anomalija pasireiškė ir vėsinimo metu: intervale nuo 330 iki 300 K staigiai pradėjo didėti keramikos laidumas dėl vandens adsorbcijos. Panašios anomalijos 300–360 K intervale stebėtos ir tiriant Na2MnP2O7, NaCsZnP2O7 bei Na2ZnP2O7 keramikas.
Temperatūrų intervale nuo 600 iki 630 K pastebėtas Na2Zn0,5Mn0,5P2O7 kristalitų laidumo aktyvacijos energijos pasikeitimas nuo 0,7 eV, kai temperatūra 350–600 K, iki 0,9 eV, kai temperatūra didesnė nei 630 K. Šis pasikeitimas siejamas su faziniu virsmu Na2MnP2O7 fazėje.
Visame tirtajame temperatūrų intervale nuo 300 iki 700 K pastebėtas dielektrinės skvarbos didėjimas kaitinant keramiką. ε' didėjimas kylant temperatūrai priklauso nuo elektroninės poliarizacijos, gardelės virpesių ir Na+ jonų migracinės poliarizacijos Na2Zn0,5Mn0,5P2O7 kristalituose.

References / Nuorodos

[1] M. Armand and J.M. Tarascon, Building better batteries, Nature 451, 652–657 (2008),
https://doi.org/10.1038/451652a
[2] J.B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22(3), 587–603 (2010),
https://doi.org/10.1021/cm901452z
[3] Z.L. Gong and Y. Yang, Recent advances in the research of polyanion-type cathode materials for Li-ion batteries, Energy Environ. Sci. 4, 3223–3242 (2011),
https://doi.org/10.1039/C0EE00713G
[4] R.A. Shakoor, C.S. Park, A.A. Raja, J. Shin, and R. Kahraman, A mixed iron–manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries, Phys. Chem. Chem. Phys. 18(5), 3929–3935 (2016),
https://doi.org/10.1039/C5CP06836C
[5] Q. Huang and S.J. Hwu, Synthesis and characterization of three new layered phosphates Na2MnP2O7, NaCsMnP2O7 and NaCsMn0.35Cu0.65P2O7, Inorg. Chem. 37(22), 5869–5874 (1998),
https://doi.org/10.1021/ic980616d
[6] P. Barpanda, T. Ye, M. Avdeev, S.Ch. Chung, and A. Yamada, A new polymorph of Na2MnP2O7 as 3.6 V cathode material for sodium-ion batteries, J. Mater. Chem. A 1(13), 4194–4197 (2013),
https://doi.org/10.1039/C3TA10210F
[7] P. Barpanda, G. Liu, Z. Mohamed, Ch.D. Ling, and A. Yamada, Structural, magnetic and electrochemical investigation of novel binary Na2-x(Fe1-yMny)P2O7 (0 ≤ y ≤ 1) pyrophosphate compounds for reachable sodium-ion batteries, Solid State Ionics 268(B), 305–311 (2014),
https://doi.org/10.1016/j.ssi.2014.03.011
[8] P. Barpanda, T. Ye, Sh. Nishimura, S.Ch. Chung, Y. Yamada, M. Okubo, H. Zhou, and A. Yamada, Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries, Electochem. Commun. 24, 116–119 (2012),
https://doi.org/10.1016/j.elecom.2012.08.028
[9] J.M. Clark, P. Barpanda, A. Yamada, and M.S. Islam, Sodium-ion battery cathodes NaFe2P2O7 and Na2MnP2O7: diffusion behaviour for high rate performance, J. Mater. Chem. A 2(30), 11807–11812 (2014),
https://doi.org/10.1039/C4TA02383H
[10] P. Barpanda, G. Liu, Ch. Ling, M. Tamaru, M. Avdeev, S.Ch. Chung, Y. Yamada, and A. Yamada, Na2FeP2O7: A safe cathode for rechargeable sodium-ion batteries, Chem. Mater. 25(17), 3480–3487 (2013),
https://doi.org/10.1021/cm401657c
[11] P. Barpanda, T. Ye, M. Avdeev, Ch.D. Ling, J. Lu, and A. Yamoda, Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries: A supersuperexchange-driven non-collinear antiferromagnet, Inorg. Chem. 52(1), 395–401 (2013),
https://doi.org/10.1021/ic302191d
[12] F. Erragh, A. Boukhari, A. Sadel, and E.M. Holt, Disodium zinc pyrophosphate and disodium (europium) zinc pyrophosphate, Acta Cryst. 54(C), 1373–1376 (1998),
https://doi.org/10.1107/S0108270198006246
[13] P. Barpanda, J. Lu, T. Ye, M. Kajiyama, S.Ch. Chung, N. Yabuuchi, S. Komaba, and A. Yamada, A layer-structured Na2CoP2O77 pyrophosphate cathode for sodium-ion batteries, RSC Adv. 3(12), 3857–3860 (2013),
https://doi.org/10.1039/C3RA23026K
[14] Ch.S. Park, H. Kim, R.A. Shakoor, E. Yang, S.Y. Lim, R. Kahraman, Y. Jung, and J.W. Choi, Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: A combined experimental and theoretical study, J. Am. Chem. Soc. 135(7), 2787–2792 (2013),
https://doi.org/10.1021/ja312044k
[15] S. Daugėla, T. Šalkus, A. Kežionis, V. Venckutė, D. Valdniece, A. Dindune, M. Barre, and A.F. Orliukas, Anomalous temperature-dependent electrical properties of Na2MnP2O7, Solid State Ionics 302, 72–76 (2017),
https://doi.org/10.1016/j.ssi.2016.12.020
[16] A.F. Orliukas, V. Venckutė, S. Daugėla, A. Kežionis, A. Dindune, D. Valdniece, J. Ronis, M. Lelis, M. Mosiałek, and T. Šalkus, Synthesis, structure and impedance spectroscopy of NaCsZn0.5Mn0.5P2O7 pyrophosphate ceramics, Solid State Ionics 302, 92–97 (2017),
https://doi.org/10.1016/j.ssi.2016.12.009
[17] S. Chouaib, A.B. Bhaiem, and K. Guidara, Dielectric relaxation and ionic conductivity studies of Na2ZnP2O7, Bull. Mater. Sci. 34(4), 915–920 (2011),
https://doi.org/10.1007/s12034-011-0214-1
[18] T. Šalkus, A. Kežionis, V. Kazlauskienė, J. Miškinis, A. Dindune, Z. Kanepe, J. Ronis, and A.F. Orliukas, Surface and impedance spectroscopy studies of Li2.8Sc1.8-yYyZr0.2(PO4)3, Matter. Sci. Eng. B 172(2), 156–162 (2010),
https://doi.org/10.1016/j.mseb.2010.05.002
[19] A. Kežionis, E. Kazakevičius, T. Šalkus, and A.F. Orliukas, Broadband high frequency impedance spectrometer with working temperatures up to 1200 K, Solid State Ionics 188(1), 110–113 (2011),
https://doi.org/10.1016/j.ssi.2010.09.034
[20] V. Di Castro and G. Polzonetti, XPS study of MnO oxidation, J. Electron. Spectrosc. Relat. Phenom. 48(1), 117–123 (1989),
https://doi.org/10.1016/0368-2048(89)80009-X
[21] R.P. Gupta and S.K. Sen, Calculation of multiplet structure of core p-vacancy levels, Phys. Rev. B 10(1), 71–77 (1974),
https://doi.org/10.1103/PhysRevB.10.71
[22] H.W. Nesbitt and D. Banerjee, Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation, Am. Mineral. 83(3–4), 305–315 (1998),
https://doi.org/10.2138/am-1998-3-414
[23] C.N.R. Rao, D.D. Sarma, S. Vasudevan, and M.S. Gegde, Study of transition metal oxides by photoelectron spectroscopy, Proc. R. Soc. A 367(1729), 239–262 (1979),
https://doi.org/10.1098/rspa.1979.0085
[24] N.S. McIntyre and D.G. Zetaruk, X-ray photoelectron spectroscopy studies of iron oxides, Anal. Chem. 49(11), 1521–1529 (1977),
https://doi.org/10.1021/ac50019a016
[25] A.R. Pratt, I.J. Muir, and H.W. Nesbitt, X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation, Geochim. Cosmochim. Acta 58(2), 827–841 (1994),
https://doi.org/10.1016/0016-7037(94)90508-8
[26] E. Kazakevičius, A. Kežionis, L. Žukauskaitė, M. Barre, T. Šalkus, A. Žalga, A. Selskis, and A. Orliukas, Characterization of Na1.3Al0.3Zr1.7(PO4)3 solid electrolyte ceramics by impedance spectroscopy, Solid State Ionics 271, 128–133 (2015),
https://doi.org/10.1016/j.ssi.2014.09.038
[27] E. Kazakevičius, A. Kežionis, L. Žukauskaitė, M. Barre, T. Šalkus, and A.F. Orliukas, Characterization of NASICON-type Na solid electrolyte ceramics by impedance spectroscopy, Funct. Mater. Lett. 7(6), 1440002 (2014),
https://doi.org/10.1142/S1793604714400025
[28] W. Bogusz, J.R. Dygas, F. Krok, A. Kezionis, R. Sobiestianskas, E. Kazakevicius, and A.F. Orliukas, Electrical conductivity dispersion in Co-doped NASICON samples, Phys. Stat. Sol. A 183(2), 323–330 (2001),
https://doi.org/10.1002/1521-396X(200102)183:2<323::AIDPSSA323>3.0.CO;2-6
[29] T. Shirai, S. Sotou, Y. Saito, M. Saito, J. Kuwano, and H. Shiroihi, Proton conducting solid electrolytes based on diphosphates, Phosporus Research Bull. 21, 31 (2007),
https://doi.org/10.3363/prb.21.31
[30] X. Sun, S. Wang, Z. Wang, X. Ye, T. Wen, and F. Huang, Proton conductivity of CeP2O7 for intermediate temperature fuel cells, Solid State Ionics 179(21–26), 1138–1141 (2008),
https://doi.org/10.1016/j.ssi.2008.01.046