Received 13 August 2017; revised 24 September 2017; accepted 20
December 2017
References
/
Nuorodos
[1] H. Yukawa, On the interaction of elementary particles. I.,
Proc. Phys. Math. Soc. Jpn.
17, 48–57 (1935),
https://doi.org/10.11429/ppmsj1919.17.0_48
[2] P. Debye and E. Hückel, Zur Theorie der Elektrolyte. I.
Gefrierpunktserniedrigung und verwandte Erscheinungen, Phys. Z.
24, 185–206 (1923)
[3] N.W. Ashcroft and N.D. Mermin,
Solid State Physics
(Saunders College, Philadelphia, 1976)
[4] Y.C. Lin, C.Y. Lin, and Y.K. Ho, Spectral data of helium
atoms with screened Coulomb potentials using the B-spline
approach, Phys. Rev. A
85, 042516 (2012),
https://doi.org/10.1103/PhysRevA.85.042516
[5] P. Serra and S. Kais, Ground-state stability and criticality
of two-electron atoms with screened Coulomb potentials using the
B-splines basis set, J. Phys. B
45, 235003 (2012),
https://doi.org/10.1088/0953-4075/45/23/235003
[6] S.L. Garavelli and F.A. Oliveira, Analytical solution for a
Yukawa-type potential, Phys. Rev. Lett.
66, 1310–1313
(1991),
https://doi.org/10.1103/PhysRevLett.66.1310
[7] J.P. Edwards, U. Gerber, C. Schubert, M.A. Trejo, and A.
Weber, The Yukawa potential: ground state energy and critical
screening, PTEP
2017(8), 083A01 (2017),
https://doi.org/10.1093/ptep/ptx107
[8] W. Lucha and F.F. Schöberl, The spinless relativistic Yukawa
problem, Int. J. Mod. Phys. A
29(31), 1450195 (2014),
https://doi.org/10.1142/S0217751X14501954
[9] S. De Leo and P. Rotelli, Amplification of coupling for
Yukawa potentials, Phys. Rev. D
69, 034006 (2004),
https://doi.org/10.1103/PhysRevD.69.034006
[10] F. Gross,
Relativistic Quantum Mechanics and Field
Theory (John Wiley & Sons, New York, 1993),
https://doi.org/10.1002/9783527617333
[11] W. Greiner,
Relativistic Quantum Mechanics: Wave
Equations (Springer-Verlag, New York, 2000),
https://doi.org/10.1007/978-3-662-04275-5
[12] A. Arda and R. Sever, Effective-mass Klein–Gordon–Yukawa
problem for bound and scattering states, J. Math. Phys.
52,
092101 (2011),
https://doi.org/10.1063/1.3641246
[13] E.Z. Liverts and V.B. Mandelzweig, Analytical computation
of amplification of coupling in relativistic equations with
Yukawa potential, Ann. Phys.
324, 388–407 (2009),
https://doi.org/10.1016/j.aop.2008.08.004
[14] M. Reed and B. Simon,
Methods of Modern Mathematical
Physics. IV: Analysis of Operators (Academic Press, New
York, 1978),
https://www.elsevier.com/books/iv-analysis-of-operators/reed/978-0-08-057045-7
[15] A. Weinstein and W. Stenger,
Methods of Intermediate
Problems for Eigenvalues – Theory and Ramifications
(Academic Press, New York, 1972),
https://www.elsevier.com/books/methods-of-intermediate-problems-for-eigenvalues-theory-and-ramifications/weinstein/978-0-12-742450-7
[16] G. Teschl,
Mathematical Methods in Quantum Mechanics:
With Applications to Schrödinger Operators,
https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/
[17] C.T.H. Baker,
The Numerical Treatment of Integral
Equations (Oxford University Press, New York, 1977)
[18] L.M. Delves and J.L. Mohamed,
Computational Methods for
Integral Equations (Cambridge University Press, New York,
1985),
https://doi.org/10.1017/CBO9780511569609
[19] D.P. Stanley and D. Robson, Nonperturbative potential model
for light and heavy quark–antiquark systems, Phys. Rev. D
21,
3180–3196 (1980),
https://doi.org/10.1103/PhysRevD.21.3180
[20] W. Lucha and F.F. Schöberl, Bound states by the spinless
Salpeter equation, Fizika B
8, 193–206 (1999),
[PDF]
[21] A. Gara, B. Durand, L. Durand, and L.J. Nickisch,
Relativistic description of quark–antiquark bound states. 1.
Spin independent treatment, Phys. Rev. D
40, 843–854
(1989),
https://doi.org/10.1103/PhysRevD.40.843
[22] J.K. Chen, Generalized virial theorem and its application
to the Salpeter equation, Acta Phys. Pol. B
47,
1155–1163 (2016),
https://doi.org/10.5506/APhysPolB.47.1155
[23] J.K. Chen, Numerical solutions of the quadratic form of the
spinless Salpeter-type equation, Rom. J. Phys.
62, 119
(2017),
[PDF]
[24] E.E. Salpeter and H.A. Bethe, A relativistic equation for
bound state problems, Phys. Rev.
84, 1232–1242 (1951),
https://doi.org/10.1103/PhysRev.84.1232
[25] E.E. Salpeter, Mass corrections to the fine structure of
hydrogen-like atoms, Phys. Rev.
87, 328–342 (1952),
https://doi.org/10.1103/PhysRev.87.328
[26] I.W. Herbst, Spectral theory of the operator (
p2
+
m2)
1/2 –
Ze2/
r,
Commun. Math. Phys.
53, 285–294 (1977),
https://doi.org/10.1007/BF01609852
[27] A. Martin and S.M. Roy, Semi-relativistic stability and
critical mass of a system of spinless bosons in gravitational
interaction, Phys. Lett. B
233, 407–411 (1989),
https://doi.org/10.1016/0370-2693(89)91331-2