, F. Rahimi Bayaz
, and M. Kouhestani
Received 10 April 2017; revised 19 May 2017; accepted 15 June 2017
References
/
Nuorodos
[1] Z. Zhang, S.J. Wang, T. Yu, and T. Wu, Controlling the
growth mechanism of ZnO nanowires by selecting catalysts, J.
Phys. Chem. C
111, 17500–17505 (2007),
https://doi.org/10.1021/jp075296a
[2] M. Laurenti, S. Stassi, M. Lorenzoni, M. Fontana, G.
Canavese, V. Cauda, and C.F. Pirri, Evaluation of the
piezoelectric properties and voltage generation of flexible zinc
oxide thin films, Nanotechnology
26, 215704 (2015),
https://doi.org/10.1088/0957-4484/26/21/215704
[3] M. Laurenti, G. Canavese, A. Sacco, M. Fontana, K. Bejtka,
M. Castellino, C.F. Pirri, and V. Cauda, Nanobranched ZnO
structure: p‐type doping induces piezoelectric voltage
generation and ferroelectric-photovoltaic effect, Adv. Mater.
27,
4218–4223 (2015),
https://doi.org/10.1002/adma.201501594
[4] A. Rahmati and S. Zakeri Afshar, Heteroepitaxial ZnO/CuO
thin film and nanorods array: photoconductivity and field
emission effect, J. Mater. Sci. Mater Electron.
28,
13032 (2017),
https://doi.org/10.1007/s10854-017-7135-8
[5] A. Rahmati and M. Yousefi, Well oriented ZnO nanorods
arrray: negative resistance and optical switching, Z. Anorg.
Allg. Chem.
643, 870–876 (2017),
https://doi.org/10.1002/zaac.201700105
[6] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M.A. Reshchikov,
S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, A comprehensive
review of ZnO materials and devices, J. Appl. Phys. 98, 041301
(2005),
https://doi.org/10.1063/1.1992666
[7] H. Morkoç and Ü. Özgür, in:
Zinc Oxide, Fundamentals,
Materials and Device Technology (Wiley VCH, 2009),
https://www.wiley.com/en-us/Zinc+Oxide%3A+Fundamentals%2C+Materials+and+Device+Technology-p-9783527408139
[8] U. Manzoor and D.K. Kim, Size control of ZnO nanostructures
formed in different temperature zones by varying Ar flow rate
with tunable optical properties, Physica E
41, 500–505
(2009),
https://doi.org/10.1016/j.physe.2008.09.012
[9] W.I. Park, D.H. Kim, S.W. Jung, and G.C. Yi, Metalorganic
vapour-phase epitaxial growth of vertically well-aligned ZnO
nanorods, Appl. Phys. Lett.
80, 4232 (2002),
https://doi.org/10.1063/1.1482800
[10] A.B. Hartanto, X. Ning, Y. Nakata, and T. Okada, Growth
mechanism of ZnO nanorods from nanoparticles formed in a laser
ablation plume, Appl. Phys. A
78, 299 (2004),
https://doi.org/10.1007/s00339-003-2286-2
[11] L. Vayssieres, K. Keis, S.E. Lindquist, and A.J. Hagfeldt,
Purpose-built anisotropic metal oxide material: 3D highly
oriented microrod array of ZnO, Phys. Chem. B
105, 3350
(2001),
https://doi.org/10.1021/jp010026s
[12] C.R. Gobbiner, A.V. Muhammed Ali, and D. Kekuda, CuO/ZnO
planar bilayer heterojunction grown by reactive dc magnetron
sputtering, J. Mater. Sci. Mater. Electron.
26,
9801–9807 (2015),
https://doi.org/10.1007/s10854-015-3652-5
[13] Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton,
F. Ren, and P.H. Fleming, Site-specific growth of ZnO nanorods
using catalysis driven molecular-beam epitaxy, Appl. Phys. Lett.
81(16), 3046–3048 (2002),
https://doi.org/10.1063/1.1512829
[14] M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P.
Yang, Catalytic growth of zinc oxide nanowires by vapour
transport, Adv. Mater.
13(2), 113–116 (2001),
https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
[15] D.L. Guo, X. Huang, G.Z. Xing, Z. Zhang, G.P. Li, M. He, H.
Zhang, H.Y. Chen, and T. Wu, Metal-layer-assisted coalescence of
Au nanoparticles and its effect on diameter control in
vapour-liquid-solid growth of oxide nanowires, Phys. Rev. B
83,
045403 (2011),
https://doi.org/10.1103/PhysRevB.83.045403
[16] G.W. She, X. Huang, L.L. Jin, X.P. Qi, L. Mu, and W.S. Shi,
Electrochemical sensors: SnO
2 nanoparticle-coated ZnO
nanotube arrays for high-performance electrochemical sensors,
Small
10(22), 4685–4692 (2014),
https://doi.org/10.1002/smll.201401471
[17] F.M. Li, G.W. Hsieh, S. Dalal, M.C. Newton, J.E. Stott, P.
Hiralal, A. Nathan, P.A. Warburton, H.E. Unalan, P. Beecher,
A.J. Flewitt, I. Robinson, G. Amaratunga, and W.I. Milne, Zinc
oxide nanostructures and high electron mobility nanocomposite
thin film transistors, IEEE Trans. Electron Dev.
55(11),
3001 (2008),
https://doi.org/10.1109/TED.2008.2005180
[18] B.D. Yao, Y.F. Chan, and N. Wang, Formation of ZnO
nanostructures by a simple way of thermal evaporation, Appl.
Phys. Lett.
81, 757 (2002),
https://doi.org/10.1063/1.1495878
[19] Z.L. Wang, X.Y. Kong, and J.M. Zuo, Induced growth of
asymmetric nanocantilever arrays on polar surfaces, Phys. Rev.
Lett.
91, 185501 (2003),
https://doi.org/10.1103/PhysRevLett.91.185502
[20] G. Modi, Zinc oxide tetrapod: a morphology with
multifunctional applications, Adv. Nat. Sci. Nanosci.
Nanotechnol.
6, 033002 (2015),
https://doi.org/10.1088/2043-6262/6/3/033002
[21] Z.L. Wang, Zinc oxide nanostructures: growth, properties
and applications, J. Phys. Condens. Matter
16, R829–858
(2004),
https://doi.org/10.1088/0953-8984/16/25/R01
[22] D. Moore, C. Ronning, C. Ma, and Z.L. Wang, Wurtzite ZnS
nanosaws produced by polar surfaces, Chem. Phys. Lett.
385,
8 (2004),
https://doi.org/10.1016/j.cplett.2003.12.063
[23] C. Ma, Y. Ding, D. Moore, X.D. Wang, and Z.L. Wang,
Single-crystal CdSe nanosaws, J. Am. Chem. Soc.
126, 708
(2004),
https://doi.org/10.1021/ja0395644
[24] R. Yousefi, F. Jamali-Sheini, A. Khorsand Zak, and M.R.
Mahmoudian, Effect of indium concentration on morphology and
optical properties of In-doped ZnO nanostructures, Ceram. Int.
38,
6295–6301 (2012),
https://doi.org/10.1016/j.ceramint.2012.04.085
[25] B.D. Cullity,
Elements of X-ray Diffraction
(Addison-Wesley, Reading, MA, 1978),
[PDF]
[26] S.W. Lee, Y.S. Lee, J.Y. Heo, S.C. Siah, D. Chua, R.E.
Brandt, S.B. Kim, J.P. Mailoa, T. Buonassisi, and R.G. Gordon,
Improved Cu
2O-based solar cells using atomic layer
deposition to control the Cu oxidation state at the p-n
junction, Adv. Energy Mater.
4(11), 1301916 (2014),
https://doi.org/10.1002/aenm.201301916
[27] G. Srinivasan, R.T.R. Kumar, and J. Kumar, Li doped and
undoped ZnO nanocrystalline thin films: a comparative study of
structural and optical properties, J. Solgel Sci. Technol.
43,
171–177 (2007),
https://doi.org/10.1007/s10971-007-1574-2
[28] O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle, L.K.
Ono, B.R. Cuenya, and H. Heinrich, Effects of annealing on
properties of ZnO thin films prepared by electrochemical
deposition in chloride medium, Appl. Surf. Sci.
256,
1895–1907 (2010),
https://doi.org/10.1016/j.apsusc.2009.10.032
[29] O. Lupan, L. Chow, L.K. Ono, B. Roldan Cuenya, G. Chai, H.
Khallaf, S. Park, and A. Schulte, Synthesis and characterization
of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route,
J. Phys. Chem. C
114, 12401–12408 (2010),
https://doi.org/10.1021/jp910263n
[30] P.K. Sharma, R.K. Dutta, and A.C. Pandey, Doping dependent
room-temperature ferromagnetism and structural properties of
dilute magnetic semiconductor ZnO:Cu
2+ nanorods, J.
Magn. Magn. Mater.
321, 4001–4005 (2009),
https://doi.org/10.1016/j.jmmm.2009.07.066
[31] K. Samanta, P. Bhattacharya, R.S. Katiyar, W. Iwamoto, P.G.
Pagliuso, and C. Rettori, Raman scattering studies in dilute
magnetic semiconductor Zn
1–xCo
xO,
Phys. Rev. B
73, 245213 (2006),
https://doi.org/10.1103/PhysRevB.73.245213
[32] R. Cusco, E. Alarcon-Llado, J. Ibanez, L. Artus, J.
Jimenez, B. Wang, and M. Callahan, Temperature dependence of
Raman scattering in ZnO, Phys. Rev. B
75, 165202 (2007),
https://doi.org/10.1103/PhysRevB.75.165202
[33] X.F. Wang, J.B. Xu, X.J. Yu, K. Xue, and X. Zhao,
Structural evidence of secondary phase segregation from the
Raman vibrational modes in Zn
1–xCo
xO
(0<
x<0.6), Appl. Phys. Lett.
91, 031908
(2007),
https://doi.org/10.1063/1.2759272
[34] M. Karaliunas, T. Serevicius, E. Kuokstis, S. Jursenas,
S.Y. Ting, J.J. Huang, and C.C. Yang, Optical characterization
of MBE-grown ZnO epilayers, Adv. Mat. Res.
222, 86–89
(2011),
https://doi.org/10.4028/www.scientific.net/AMR.222.86
[35] D.D. Wang, G.Z. Xing, J.H. Yang, L.L. Yang, M. Gao, J. Cao,
Y.J. Zhang, and B. Yao, Dependence of energy transfer and
photoluminescence on tailored defects in Eu-doped ZnO
nanosheets-based microflowers, J. Alloy. Comp.
504,
22–26 (2010),
https://doi.org/10.1016/j.jallcom.2010.05.105
[36] G.Z. Xing, G.C. Xing, M.J. Li, E.J. Sie, D. Wang, A.
Sulistio, Q.L. Ye, C. Hon, A. Huan, T. Wu, and T.C. Sum, Charge
transfer dynamics in Cu-doped ZnO nanowires, Appl. Phys. Lett.
98,
102105 (2011),
https://doi.org/10.1063/1.3558912