[PDF]    https://doi.org/10.3952/physics.v57i4.3601

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 225–231 (2017)


PLANAR ASYMMETRIC DUAL DIODE FOR MILLIMETRE WAVE DETECTION AND POWER MEASUREMENT
Algirdas Sužiedėlisa,b, Steponas Ašmontasa, Jonas Gradauskasa,b, Aldis Šilėnasa, Aurimas Čerškusa,b, Andžej Lučuna, Česlav Paškeviča, Maksimas Anbinderisa,b, and Ovidijus Alfonsas Žalysa
aCenter for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
bVilnius Gediminas Technical University, Saulėtekio 11, 10223 Vilnius, Lithuania
algirdas.suziedelis@ftmc.lt

Received 9 June 2017; revised 12 September 2017; accepted 20 September 2017

The design of a simple cost-effective planar semiconductor microwave diode is proposed. The operation is based on hot carrier phenomena and rectification of microwave currents flowing through the structure composed of two diodes connected in series and having different active region areas. A simplified technological process and the use of simplex semiconductor material result in the reduction of both the time and the cost of fabrication of a dual microwave diode. By choosing an appropriate GaAs substrate, two types of microwave diodes were produced simultaneously: one almost demonstrating the ohmic behaviour and the other two having the asymmetrical Schottky-like IV characteristic. The Schottky-like planar diodes exhibited a higher responsivity to millimetre range microwave radiation and a faster response to pulsed (down to a nanosecond scale) excitation, but the ohmic ones demonstrated better noise properties.
Keywords: millimetre wave power measurement, ohmic contacts, Schottky junctions
PACS: 68.35.bg, 84.40.-x, 07.57.Kp

PLANARINIS ASIMETRINIS DVIGUBAS DIODAS MILIMETRINIŲ BANGŲ DETEKCIJAI IR GALIOS MATAVIMUI
Algirdas Sužiedėlisa,b, Steponas Ašmontasa, Jonas Gradauskasa,b, Aldis Šilėnasa, Aurimas Čerškusa,b, Andžej Lučuna, Česlav Paškeviča, Maksimas Anbinderisa,b, Ovidijus Alfonsas Žalysa

aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas, Vilnius, Lietuva


References / Nuorodos

[1] P.F. Goldsmith, C.-T. Hsieh, G.R. Hunguenin, and J. Kapitzky, Focal plane imaging systems for millimetre wavelengths, IEEE Trans. Microw. Theory Tech. 41(10), 1664–1675 (1993),
https://doi.org/10.1109/22.247910
[2] S. Oka, H. Togo, N. Kukutsu, and T. Nagatsuma, Latest trends in millimeter-wave imaging technology, Prog. Electromagn. Res. Lett. 1, 197–204 (2008),
https://doi.org/10.2528/PIERL07120604
[3] Ž. Kancleris, A. Laurinavičius, and T. Anbinderis, Sensitivity of homogeneity mapping of semiconductor wafer using millimetre waves, Int. J. Infrared Millimeter Waves 25(11), 1633–1644 (2004),
https://doi.org/10.1023/B:IJIM.0000047453.30952.79
[4] S. Tokoro, K. Kurada, A. Kawakubo, K. Fujita, and H. Fujinami, Electronically scanned millimetre-wave radar for pre-crash safety and adaptive cruise control system, in: IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (IEEE, Columbus, OH, USA, 2003) pp. 304–309,
https://doi.org/10.1109/IVS.2003.1212927
[5] T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, and F. Gutierrez, Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 1, 335–348 (2013),
https://doi.org/10.1109/ACCESS.2013.2260813
[6] P.H. Siegel, Terahertz technology, IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002),
https://doi.org/10.1109/22.989974
[7] J.M. Shannon, A majority-carrier camel diode, Appl. Phys. Lett. 35(1), 63–65 (1979),
https://doi.org/10.1063/1.90931
[8] R.J. Malik, T.R. AuCoin, R.L. Ross, K. Board, C.E.C. Wood, and L.F. Eastman, Planar-doped barriers in GaAs by molecular beam epitaxy, Electron. Lett. 16(22), 836–838 (1980),
https://doi.org/10.1049/el:19800594
[9] A. Lechner, M. Kneidinger, and R. Kuch, Planar n-GaAs/N-GaAlAs microwave diodes, Electron Lett. 16(1), 1–2 (1980),
https://doi.org/10.1049/el:19800001
[10] J. Gradauskas, A. Sužiedėlis, S. Ašmontas, E. Širmulis, V. Kazlauskaitė, A. Lučun, and M. Vingelis, Sensitive planar semiconductor detector from microwave to infrared applications, IEEE Sens. J. 10(3), 662–667 (2010),
https://doi.org/10.1109/JSEN.2009.2038654
[11] R.I. Harrison and J. Zucker, Hot-carrier microwave detector, Proc. IEEE 54(4), 588–595 (1966),
https://doi.org/10.1109/PROC.1966.4778
[12] S. Ašmontas and A. Sužiedėlis, New microwave detector, Int. J. Infrared Millimeter Waves 15(3), 525–538 (1994),
https://doi.org/10.1007/BF02096235
[13] D. Seliuta, E. Širmulis, V. Tamošiūnas, S. Balakauskas, S. Ašmontas, A. Sužiedėlis, J. Gradauskas, G. Valušis, P.D. Steenson, W.-H. Chow, P. Harrison, A. Lisauskas, H.G. Roskos, and K. Köhler, Detection of terahertz/sub-terahertz radiation by asymmetrically-shaped 2DEG layers, Electron. Lett. 40(10), 631–632 (2004),
https://doi.org/10.1049/el:20040412
[14] M. Heiblum, M.I. Nathan, and C.A. Chang, Characteristics of AuGeNi ohmic contacts to GaAs, Solid State Electron. 25(3), 185–195 (1982),
https://doi.org/10.1016/0038-1101(82)90106-X
[15] S. Ašmontas and A. Sužiedėlis, Electric properties of small area GaAs nn+ junction, Lith. J. Phys. 33(1), 45–51 (1993)
[16] K. Ashida, M. Inoue, J. Shirafuji, and Y. Inuishi, Energy relaxation effect of hot electrons in GaAs, J. Phys. Soc. Jpn. 37(2), 408–414 (1974),
https://doi.org/10.1143/JPSJ.37.408
[17] J. Vaitkus, E. Starikov, L. Subačius, and K. Jarašiūnas, Field dependences of light self-diffraction efficiency and hot carrier diffusion coefficient in gallium arsenide and silicon, Lith. J. Phys. 30(3), 336–351 (1990)
[18] S. Ašmontas, J. Gradauskas, A. Sužiedelis, E. Širmulis, and A. Urbelis, Hot carrier photocapacitive effect, Proc. SPIE 5946, 594619 1–6 (2004),
https://doi.org/10.1117/12.639324