Received 9 June 2017; revised 12 September 2017; accepted 20
September 2017
References
/
Nuorodos
[1] P.F. Goldsmith, C.-T. Hsieh, G.R. Hunguenin, and J.
Kapitzky, Focal plane imaging systems for millimetre
wavelengths, IEEE Trans. Microw. Theory Tech.
41(10),
1664–1675 (1993),
https://doi.org/10.1109/22.247910
[2] S. Oka, H. Togo, N. Kukutsu, and T. Nagatsuma, Latest trends
in millimeter-wave imaging technology, Prog. Electromagn. Res.
Lett.
1, 197–204 (2008),
https://doi.org/10.2528/PIERL07120604
[3] Ž. Kancleris, A. Laurinavičius, and T. Anbinderis,
Sensitivity of homogeneity mapping of semiconductor wafer using
millimetre waves, Int. J. Infrared Millimeter Waves
25(11),
1633–1644 (2004),
https://doi.org/10.1023/B:IJIM.0000047453.30952.79
[4] S. Tokoro, K. Kurada, A. Kawakubo, K. Fujita, and H.
Fujinami, Electronically scanned millimetre-wave radar for
pre-crash safety and adaptive cruise control system, in:
IEEE
IV2003 Intelligent Vehicles Symposium. Proceedings (IEEE,
Columbus, OH, USA, 2003) pp. 304–309,
https://doi.org/10.1109/IVS.2003.1212927
[5] T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K.
Wang, G.N. Wong, J.K. Schulz, M. Samimi, and F. Gutierrez,
Millimeter wave mobile communications for 5G cellular: It will
work! IEEE Access
1, 335–348 (2013),
https://doi.org/10.1109/ACCESS.2013.2260813
[6] P.H. Siegel, Terahertz technology, IEEE Trans. Microw.
Theory Tech.
50, 910–928 (2002),
https://doi.org/10.1109/22.989974
[7] J.M. Shannon, A majority-carrier camel diode, Appl. Phys.
Lett.
35(1), 63–65 (1979),
https://doi.org/10.1063/1.90931
[8] R.J. Malik, T.R. AuCoin, R.L. Ross, K. Board, C.E.C. Wood,
and L.F. Eastman, Planar-doped barriers in GaAs by molecular
beam epitaxy, Electron. Lett.
16(22), 836–838 (1980),
https://doi.org/10.1049/el:19800594
[9] A. Lechner, M. Kneidinger, and R. Kuch, Planar
n-GaAs/
N-GaAlAs
microwave diodes, Electron Lett.
16(1), 1–2 (1980),
https://doi.org/10.1049/el:19800001
[10] J. Gradauskas, A. Sužiedėlis, S. Ašmontas, E. Širmulis, V.
Kazlauskaitė, A. Lučun, and M. Vingelis, Sensitive planar
semiconductor detector from microwave to infrared applications,
IEEE Sens. J.
10(3), 662–667 (2010),
https://doi.org/10.1109/JSEN.2009.2038654
[11] R.I. Harrison and J. Zucker, Hot-carrier microwave
detector, Proc. IEEE
54(4), 588–595 (1966),
https://doi.org/10.1109/PROC.1966.4778
[12] S. Ašmontas and A. Sužiedėlis, New microwave detector, Int.
J. Infrared Millimeter Waves
15(3), 525–538 (1994),
https://doi.org/10.1007/BF02096235
[13] D. Seliuta, E. Širmulis, V. Tamošiūnas, S. Balakauskas, S.
Ašmontas, A. Sužiedėlis, J. Gradauskas, G. Valušis, P.D.
Steenson, W.-H. Chow, P. Harrison, A. Lisauskas, H.G. Roskos,
and K. Köhler, Detection of terahertz/sub-terahertz radiation by
asymmetrically-shaped 2DEG layers, Electron. Lett.
40(10),
631–632 (2004),
https://doi.org/10.1049/el:20040412
[14] M. Heiblum, M.I. Nathan, and C.A. Chang, Characteristics of
AuGeNi ohmic contacts to GaAs, Solid State Electron.
25(3),
185–195 (1982),
https://doi.org/10.1016/0038-1101(82)90106-X
[15] S. Ašmontas and A. Sužiedėlis, Electric properties of small
area GaAs
n–
n+ junction, Lith. J.
Phys.
33(1), 45–51 (1993)
[16] K. Ashida, M. Inoue, J. Shirafuji, and Y. Inuishi, Energy
relaxation effect of hot electrons in GaAs, J. Phys. Soc. Jpn.
37(2),
408–414 (1974),
https://doi.org/10.1143/JPSJ.37.408
[17] J. Vaitkus, E. Starikov, L. Subačius, and K. Jarašiūnas,
Field dependences of light self-diffraction efficiency and hot
carrier diffusion coefficient in gallium arsenide and silicon,
Lith. J. Phys.
30(3), 336–351 (1990)
[18] S. Ašmontas, J. Gradauskas, A. Sužiedelis, E. Širmulis, and
A. Urbelis, Hot carrier photocapacitive effect, Proc. SPIE
5946,
594619 1–6 (2004),
https://doi.org/10.1117/12.639324