[PDF]    https://doi.org/10.3952/physics.v57i4.3602

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 232–242 (2017)


ENHANCING ELECTRICAL CONDUCTIVITY OF MULTIWALLED CARBON NANOTUBE/EPOXY COMPOSITES BY GRAPHENE NANOPLATELETS
Ieva Kranauskaitėa, Jan Macutkeviča, Anna Borisovab, Alfonso Martonec, Mauro Zarrellic, Algirdas Selskisd, Andrey Aniskevichb, and Jūras Banysa
aFaculty of Physics, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
bInstitute for Mechanics of Materials, University of Latvia, 23 Aizkraukles iela, 1006 Riga, Latvia
cInstitute for Polymers, Composites and Biomedical Materials, National Research Council, P.le E. Fermi 1, 80155 Portici, Naples, Italy
dNational Center for Physical Sciences and Technology, Saulėtekio 3, 10222 Vilnius, Lithuania
ieva.kranauskaite@ff.vu.lt

Received 20 June 2017; revised 20 July 2017; accepted 20 September 2017

The need of high performance integrated circuits and high power density communication devices drives the development of materials enhancing the conductive performances by carbon nanoparticles. Among nanocomposites, the ternary hybrid carbon nanotubes/graphene nanoplatelets/polymer composites represent a debatable route to enhance the transport performances.
In this study hybrid ternary nanocomposites were manufactured by direct mixing of multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) at a fixed filler content (0.3 wt.%), but different relative combination, within an epoxy system. MWNT/epoxy nanocomposites were manufactured for comparison. The quality of dispersion was evaluated by optical and scanning electron microscopy (SEM). The electrical properties of hybrid composites were measured in the temperature range from 30 up to 300 K.
The synergic combination of 1D/2D particles did not interfere with the percolative behaviour of MWCNTs but improved the overall electrical performances. The addition of a small amount of GNPs (0.05 wt.%) led to a strong increment of the sample conductivity over all the temperature range, compared to that of mono filler systems.
Keywords: graphene nanoplatelets, multiwalled carbon nanotubes, epoxy resin, hybrid nanocomposites, electrical conductivity
PACS: 72.80.Tm


EPOKSIDINĖS DERVOS KOMPOZITŲ SU DAUGIASIENIAIS ANGLIES NANOVAMZDELIAIS ELEKTRINIO LAIDUMO GERINIMAS GRAFENO DALELĖMIS
Ieva Kranauskaitėa, Jan Macutkeviča, Anna Borisovab, Alfonso Martonec, Mauro Zarrellic, Algirdas Selskisd, Andrey Aniskevichb, Jūras Banysa
aVilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
bLatvijos universiteto Medžiagų mechanikos institutas, Ryga, Latvija
cNacionalinės mokslinių tyrimų tarybos Polimerų, kompozitų ir biomedžiagų institutas, Portiči, Italija
dFizinių ir technologijos mokslų centras, Vilnius, Lietuva


References / Nuorodos

[1] T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, and J.H. Lee, Recent advances in graphene based polymer composites, Prog. Polym. Sci. 35(11), 1350–1375 (2010),
https://doi.org/10.1016/j.progpolymsci.2010.07.005
[2] R.J. Young, I.A. Kinloch, L. Gong, and K.S. Novoselov, The mechanics of graphene nanocomposites: a review, Compos. Sci. Technol. 72(12), 1459–1476 (2012),
https://doi.org/10.1016/j.compscitech.2012.05.005
[3] F. Qin and C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys. 111, 061301 (2012),
https://doi.org/10.1063/1.3688435
[4] G. Inzelt, Conducting Polymers: A New Era in Electrochemistry (Springer, Berlin, 2008),
http://www.springer.com/gp/book/9783642095054
[5] Metal-filled Polymers, ed. S.K. Bhattacharya (Dekker, New York, 1986)
[6] R. Strumpler and J. Glatz-Reichenbach, Conducting polymer composites, J. Electroceram. 3(4), 329–346 (1999),
https://doi.org/10.1023/A:1009909812823
[7] J.N. Coleman, U. Khan, W.J. Blau, and Y.K. Gun'ko, Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, Carbon 44(9), 1624–1652 (2006),
https://doi.org/10.1016/j.carbon.2006.02.038
[8] J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, and A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer 44(19), 5893–5899 (2003),
https://doi.org/10.1016/S0032-3861(03)00539-1
[9] C.A. Martin, J.K.W. Sandler, M.S.P. Shaffer, M.K. Schwarz, W. Bauhofer, K. Schulte, and A.H. Windle, Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites, Compos. Sci. Tech. 64(15), 2309–2316 (2004),
https://doi.org/10.1016/j.compscitech.2004.01.025
[10] S.Y. Fu, X.Q. Feng, B. Lauke, and Y.W. Mai, Effects of particle size, article/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Compos. B Eng. 39(6), 933–961 (2008),
https://doi.org/10.1016/j.compositesb.2008.01.002
[11] J.B. Bai and A. Allaoui, Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites – experimental investigation, Composites A 34(8), 689–694 (2003),
https://doi.org/10.1016/S1359-835X(03)00140-4
[12] X.M. Chen, J.W. Shen, and W.Y. Huang, Novel electrically conductive polypropylene/graphite nanocomposites, J. Mater. Sci. Lett. 21(3), 213–214 (2002),
https://doi.org/10.1023/A:1014708808230
[13] W.G. Weng, G.H. Chen, D.J. Wu, and W.L. Yan, HDPE/expanded graphite electrically conducting composite, Compos. Interface 11(2), 131–143 (2004),
https://doi.org/10.1163/156855404322971404
[14] I. Neitzel, V. Mochalin, and Y. Gogotsi, Advances in surface chemistry of nanodiamond and nanodiamond–polymer composites, in: Ultrananocrystalline Diamond: Synthesis. Properties and Applications, 2nd edn, eds. O.A. Shenderova and D.M. Gruen (William Andrew, 2012), pp. 421–457,
https://www.elsevier.com/books/ultrananocrystalline-diamond/shenderova/978-1-4377-3465-2
[15] T. Glaskova, M. Zarrelli, A. Borisova, K. Timchenko, A. Aniskevich, and M. Giordano, Method of quantitative analysis of filler dispersion degree in composite systems with spherical inclusions, Compos. Sci. Technol. 71(13), 1543–1549 (2011),
https://doi.org/10.1016/j.compscitech.2011.06.009
[16] A.S. Patole, S.P. Patole, S.Y. Jung, J.B. Yoo, J.H. An, and T.H. Kim, Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization, Eur. Polym. J. 48(2), 252–259 (2012),
https://doi.org/10.1016/j.eurpolymj.2011.11.005
[17] U. Khan, I. O'Connor, Y.K. Gun'ko, and J.N. Coleman, The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties, Carbon 48(10), 2825–2830 (2010),
https://doi.org/10.1016/j.carbon.2010.04.014
[18] S. Chatterjee, F. Nafezarefi, N.H. Tai, L. Schlagenhauf, F.A. Nuesch, and B.T.T. Chu, Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites, Carbon 50(15), 5380–5386 (2012),
https://doi.org/10.1016/j.carbon.2012.07.021
[19] M. Safdari, and M.S. Al-Haik, Synergistic electrical and thermal transport properties of hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets, Carbon 64, 111–121 (2013),
https://doi.org/10.1016/j.carbon.2013.07.042
[20] J. Macutkevic, P. Kuzhir, A. Paddubskaya, S. Maksimenko, J. Banys, A. Celzard, V. Fierro, S. Bistarelli, A. Cataldo, F. Micciulla, and S. Bellucci, Electrical transport in carbon black-epoxy resin composites at different temperatures, J. Appl. Phys. 114(3), 033707 (2013),
https://doi.org/10.1063/1.4815870
[21] I. Balberg, C.H. Anderson, S. Alexander, and N. Wagner, Excluded volume and its relation to the onset of percolation, Phys. Rev. B 30(7), 3933–3943 (1984),
https://doi.org/10.1103/PhysRevB.30.3933
[22] A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, and J.F. Mareche, Critical concentration in percolating systems containing a high-aspect-ratio filler, Phys. Rev. B 53, 6209 (1996),
https://doi.org/10.1103/PhysRevB.53.6209
[23] A. Li, C. Zhang, and Y.F. Zhang, Graphene nanosheets-filled epoxy composites prepared by a fast dispersion method, J. Appl. Polym. Sci. 134(36), 45152 (2017),
https://doi.org/10.1002/app.45152
[24] A. Plyushch, J. Macutkevic, P. Kuzhir, J. Banys, Dz. Bychanok, Ph. Lambin, S. Bistarelli, A. Cataldo, F. Micciulla, and S. Bellucci, Electromagnetic properties of graphene nanoplatelets/epoxy composites, Compos. Sci. Technol. 128, 75–83 (2016),
https://doi.org/10.1016/j.compscitech.2016.03.023
[25] A.K. Jonsher, The universal dielectric response and its physical significance, IEEE Trans. Electr. Insul. 27(3), 407–423 (1992),
https://doi.org/10.1109/14.142701
[26] D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd edn (Taylor & Francis, London, 1994),
https://www.crcpress.com/Introduction-To-Percolation-Theory-Revised-Second-Edition/Stauffer-Aharony/p/book/9780748402533
[27] U. Szeluga, B. Kumanek, and B. Trzebicka, Synergy in hybrid polymer/nanocarbon composites. A review, Composites A 73, 204–231 (2015),
https://doi.org/10.1016/j.compositesa.2015.02.021
[28] Z.A. Ghaleb, M. Mariatti, and Z.M. Ariff, Synergy effects of graphene and multiwalled carbon nanotubes hybrid system on properties of epoxy nanocomposites, J. Reinf. Plast. Compos. 36(9), 685–695 (2017),
https://doi.org/10.1177/0731684417692055
[29] I. Balberg, Tunnelling and percolation in lattices and the continuum, J. Phys. D 42(6), 064003 (2009),
https://doi.org/10.1088/0022-3727/42/6/064003
[30] P. Sheng, E.K. Sichel, and J.I. Gettleman, Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites, Phys. Rev. Lett. 40, 1197–1200 (1978),
https://doi.org/10.1103/PhysRevLett.40.1197
[31] T.A. Ezquerra, M. Kulesza, and F.J. Balta Galleja, Electrical transport in polyethylene–graphite composite materials, Synth. Met. 41, 915–920 (1991),
https://doi.org/10.1016/0379-6779(91)91526-G