Ihor P. Studenyak
, Vitalii Yu. Izai
,
Artem I. Pogodin
, Oleksandr P. Kokhan
,
Vasil I. Sidey
, Mar'yan Yu. Sabov
Received 16 June 2017; revised 14 July 2017; accepted 20 September
2017
References
/
Nuorodos
[1] W.F. Kuhs, R. Nitsche, and K. Scheunemann, The argyrodites –
a new family of tetrahedrally close-packed structures, Mater.
Res. Bull.
14, 241–248 (1979),
https://doi.org/10.1016/0025-5408(79)90125-9
[2] I.P. Studenyak, M. Kranjčec, G.S. Kovacs, I.D. Desnica, V.V.
Panko, and V.Yu. Slivka, Influence of compositional disorder on
optical absorption processes in Cu
6P(S
1-xSe
x)
5I
crystals, J. Mater. Res.
16, 1600–1608 (2001),
https://doi.org/10.1557/JMR.2001.0222
[3] I.P. Studenyak, M. Kranjčec, G.S. Kovacs, V.V. Panko, V.V.
Mitrovcij, and O.A Mikajlo, Structural disordering studies in Cu
6+δPS
5I
single crystals, Mater. Sci. Eng. B
97, 34–38 (2003),
https://doi.org/10.1016/S0921-5107(02)00392-6
[4] A. Gagor, A. Pietraszko, and D. Kaynts, Diffusion paths
formation for Cu
+ ions in superionic Cu
6PS
5I
single crystals studied in terms of structural phase transition,
J. Solid State Chem.
178, 3366–3375 (2005),
https://doi.org/10.1016/j.jssc.2005.08.015
[5] E. Gaudin, F. Boucher, V. Petricek, F. Taulelle, and M.
Evain, Structures and phase transitions of the
A7PSe
6
(
A = Ag, Cu) argyrodite-type ionic conductors. II.
β-
and
γ-Cu
7PSe
6, Acta Cryst. B
56,
402–408 (2000),
https://doi.org/10.1107/S0108768199016614
[6] R.B. Beeken, C.R. Driessen, B.M. Hinaus, and D.E. Pawlisch,
Electrical conductivity of Ag
7PSe
6 and Cu
7PSe
6,
Solid State Ionics
179, 1058–1060 (2008),
https://doi.org/10.1016/j.ssi.2008.01.014
[7] K.S. Weldert, W.G. Zeier, T.W. Day, M. Panthofer, G.J.
Snyder, and W. Tremel, Thermoelectric transport in Cu
7PSe
6
with high copper ionic mobility, J. Am. Chem. Soc.
136,
12035–12040 (2014),
https://doi.org/10.1021/ja5056092
[8] R.B. Beeken and B.M. Hinaus, The effect of sulfide
substitution in the mixed conductor Cu
7PSe
6,
J. Phys. Chem. Solids
72, 1081–1084 (2011),
https://doi.org/10.1016/j.jpcs.2011.06.001
[9] H. Andrae and R. Blachnik, Metal
sulphide-tetraphosphorusdekasulphide phase diagrams, J. Alloys
Compd.
189, 209–215 (1992),
https://doi.org/10.1016/0925-8388(92)90709-I
[10] S. Fiechter and E. Gmelin, Thermochemical data and phase
transition of argyrodite-type ionic conductors ME
6PS
5HAL
and Me
7PS
6 (ME = Cu, Ag; HAL = Cl, Br, I),
Thermochim. Acta
87, 319–334 (1985),
https://doi.org/10.1016/0040-6031(85)85351-X
[11] A. Kežionis, E. Kazakevičius, T. Šalkus, and A.F. Orliukas,
Broadband high frequency impedance spectrometer with working
temperatures up to 1200 K, Solid State Ionics
188,
110–113 (2011),
https://doi.org/10.1016/j.ssi.2010.09.034
[12] A. Kezionis, S. Kazlauskas, D. Petrulionis, and A.F.
Orliukas, Broadband method for the determination of small
sample's electrical and dielectric properties at high
temperatures, IEEE Trans. Microw. Theory Tech.
62,
2456–2461 (2014),
https://doi.org/10.1109/TMTT.2014.2350963
[13] H.M. Rietveld, A profile refinement method for nuclear and
magnetic structures, J. Appl. Crystallogr.
2, 65–71
(1969),
https://doi.org/10.1107/S0021889869006558
[14] L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, and P.
Scardi, Rietveld refinement guidelines, J. Appl. Crystallogr.
32,
36–50 (1999),
https://doi.org/10.1107/S0021889898009856
[15] A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R.
Rizzi, N. Corriero, and A. Falcicchio, EXPO2013: a kit of tools
for phasing crystal structures from powder data, J. Appl.
Crystallogr.
46, 1231–1235 (2013),
https://doi.org/10.1107/S0021889813013113
[16] M. Evain, E. Gaudin, F. Boucher, V. Petricek, and F.
Taulellec, Structures and phase transitions of the
A7PSe
6
(
A = Ag, Cu) argyrodite-type ionic conductors. I. Ag
7PSe
6,
Acta Crystallogr. B
54, 376–383 (1998),
https://doi.org/10.1107/S0108768197019654
[17] F. Pertlik, Hydrothermal synthesis and crystal structure
determination of heptasilver(I)-disulfur-tetrathioarsenate(V),
Ag
7S
2(AsS
4), with a survey on
thioarsenate anions, J. Solid State Chem.
112, 170–175
(1994),
https://doi.org/10.1006/jssc.1994.1282
[18] J. Rodriguez-Carvajal,
FullProf.2k: A Rietveld
Refinement and Pattern Matching Analysis Program, Version 5.60
(Laboratoire Léon Brillouin (CEACNRS), France, 2015)
[19] R.A. Young and D.B. Wiles, Profile shape functions in
Rietveld refinements, J. Appl. Crystallogr.
15, 430–438
(1982),
https://doi.org/10.1107/S002188988201231X
[20] J.-F. Bérar and G. Baldinozzi, Modeling of line-shape
asymmetry in powder diffraction, J. Appl. Crystallogr.
26,
128–129 (1993),
https://doi.org/10.1107/S0021889892009725
[21] W.A. Dollase, Correction of intensities for preferred
orientation in powder diffractometry: application of the March
model, J. Appl. Crystallogr.
19, 267–272 (1986),
https://doi.org/10.1107/S0021889886089458
[22] E. Jansen, W. Schäfer, and G. Will, R-values in analysis of
powder diffraction data using Rietveld refinement, J. Appl.
Crystallogr.
27, 492–496 (1994),
https://doi.org/10.1107/S0021889893012348
[23] I.P. Studenyak, M. Kranjčec, V.V. Bilanchuk, O.P. Kokhan,
A.F. Orliukas, A. Kezionis, E. Kazakevicius, and T. Salkus,
Temperature variation of electrical conductivity and absorption
edge in Cu
7GeSe
5I advanced superionic
conductor, J. Phys. Chem. Solids
70, 1478–1481 (2009),
https://doi.org/10.1016/j.jpcs.2009.09.003