[PDF]    https://doi.org/10.3952/physics.v57i4.3603

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 57, 243–251 (2017)


STRUCTURAL AND ELECTRICAL PROPERTIES OF ARGYRODITE-TYPE Cu7PS6 CRYSTALS
Ihor P. Studenyaka, Vitalii Yu. Izaia, Artem I. Pogodina, Oleksandr P. Kokhana, Vasil I. Sideya, Mar'yan Yu. Sabova, Algimantas Kežionisb, Tomas Šalkusb, and Jūras Banysb
aUzhhorod National University, 46 Pidhirna Str., 88000 Uzhhorod, Ukraine
bFaculty of Physics, Vilnius University, Saulėtekio 9/3, 10222 Vilnius, Lithuania
tomas.salkus@ff.vu.lt

Received 16 June 2017; revised 14 July 2017; accepted 20 September 2017

Cu7PS6 crystals were grown using direct crystallisation from the melt (Bridgman–Stockbarger technique). The crystal structure of Cu7PS6 was determined by X-ray powder diffraction. Cu7PS6 crystallise in the cubic structure, space group P213 (No. 198), the lattice parameter a = 9.6706(1) Å, formula units per cell Z = 4. Electrical properties of Cu7PS6 crystals were studied in the frequency range 10–1010 Hz and in the temperature interval 296–351 K. The performed analysis shows that the Cu7PS6 crystals are mixed electron-ionic conductors with some growth defects.
Keywords: inorganic materials, crystal growth, crystal structure, X-ray diffraction, charge transport
PACS: 81.10.-h, 84.37.+q, 61.05.cp

ARGIRODITO TIPO Cu7PS6 KRISTALŲ STRUKTŪRA IR ELEKTRINĖS SAVYBĖS
Ihor P. Studenyaka, Vitalii Yu. Izaia, Artem I. Pogodina, Oleksandr P. Kokhana, Vasil I. Sideya, Mar'yan Yu. Sabova, Algimantas Kežionisb, Tomas Šalkusb, Jūras Banysb

aUžhorodo nacionalinis universitetas, Užhorodas, Ukraina
bVilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva


References / Nuorodos

[1] W.F. Kuhs, R. Nitsche, and K. Scheunemann, The argyrodites – a new family of tetrahedrally close-packed structures, Mater. Res. Bull. 14, 241–248 (1979),
https://doi.org/10.1016/0025-5408(79)90125-9
[2] I.P. Studenyak, M. Kranjčec, G.S. Kovacs, I.D. Desnica, V.V. Panko, and V.Yu. Slivka, Influence of compositional disorder on optical absorption processes in Cu6P(S1-xSex)5I crystals, J. Mater. Res. 16, 1600–1608 (2001),
https://doi.org/10.1557/JMR.2001.0222
[3] I.P. Studenyak, M. Kranjčec, G.S. Kovacs, V.V. Panko, V.V. Mitrovcij, and O.A Mikajlo, Structural disordering studies in Cu6+δPS5I single crystals, Mater. Sci. Eng. B 97, 34–38 (2003),
https://doi.org/10.1016/S0921-5107(02)00392-6
[4] A. Gagor, A. Pietraszko, and D. Kaynts, Diffusion paths formation for Cu+ ions in superionic Cu6PS5I single crystals studied in terms of structural phase transition, J. Solid State Chem. 178, 3366–3375 (2005),
https://doi.org/10.1016/j.jssc.2005.08.015
[5] E. Gaudin, F. Boucher, V. Petricek, F. Taulelle, and M. Evain, Structures and phase transitions of the A7PSe6 (A = Ag, Cu) argyrodite-type ionic conductors. II. β- and γ-Cu7PSe6, Acta Cryst. B 56, 402–408 (2000),
https://doi.org/10.1107/S0108768199016614
[6] R.B. Beeken, C.R. Driessen, B.M. Hinaus, and D.E. Pawlisch, Electrical conductivity of Ag7PSe6 and Cu7PSe6, Solid State Ionics 179, 1058–1060 (2008),
https://doi.org/10.1016/j.ssi.2008.01.014
[7] K.S. Weldert, W.G. Zeier, T.W. Day, M. Panthofer, G.J. Snyder, and W. Tremel, Thermoelectric transport in Cu7PSe6 with high copper ionic mobility, J. Am. Chem. Soc. 136, 12035–12040 (2014),
https://doi.org/10.1021/ja5056092
[8] R.B. Beeken and B.M. Hinaus, The effect of sulfide substitution in the mixed conductor Cu7PSe6, J. Phys. Chem. Solids 72, 1081–1084 (2011),
https://doi.org/10.1016/j.jpcs.2011.06.001
[9] H. Andrae and R. Blachnik, Metal sulphide-tetraphosphorusdekasulphide phase diagrams, J. Alloys Compd. 189, 209–215 (1992),
https://doi.org/10.1016/0925-8388(92)90709-I
[10] S. Fiechter and E. Gmelin, Thermochemical data and phase transition of argyrodite-type ionic conductors ME6PS5HAL and Me7PS6 (ME = Cu, Ag; HAL = Cl, Br, I), Thermochim. Acta 87, 319–334 (1985),
https://doi.org/10.1016/0040-6031(85)85351-X
[11] A. Kežionis, E. Kazakevičius, T. Šalkus, and A.F. Orliukas, Broadband high frequency impedance spectrometer with working temperatures up to 1200 K, Solid State Ionics 188, 110–113 (2011),
https://doi.org/10.1016/j.ssi.2010.09.034
[12] A. Kezionis, S. Kazlauskas, D. Petrulionis, and A.F. Orliukas, Broadband method for the determination of small sample's electrical and dielectric properties at high temperatures, IEEE Trans. Microw. Theory Tech. 62, 2456–2461 (2014),
https://doi.org/10.1109/TMTT.2014.2350963
[13] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2, 65–71 (1969),
https://doi.org/10.1107/S0021889869006558
[14] L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, and P. Scardi, Rietveld refinement guidelines, J. Appl. Crystallogr. 32, 36–50 (1999),
https://doi.org/10.1107/S0021889898009856
[15] A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, and A. Falcicchio, EXPO2013: a kit of tools for phasing crystal structures from powder data, J. Appl. Crystallogr. 46, 1231–1235 (2013),
https://doi.org/10.1107/S0021889813013113
[16] M. Evain, E. Gaudin, F. Boucher, V. Petricek, and F. Taulellec, Structures and phase transitions of the A7PSe6 (A = Ag, Cu) argyrodite-type ionic conductors. I. Ag7PSe6, Acta Crystallogr. B 54, 376–383 (1998),
https://doi.org/10.1107/S0108768197019654
[17] F. Pertlik, Hydrothermal synthesis and crystal structure determination of heptasilver(I)-disulfur-tetrathioarsenate(V), Ag7S2(AsS4), with a survey on thioarsenate anions, J. Solid State Chem. 112, 170–175 (1994),
https://doi.org/10.1006/jssc.1994.1282
[18] J. Rodriguez-Carvajal, FullProf.2k: A Rietveld Refinement and Pattern Matching Analysis Program, Version 5.60 (Laboratoire Léon Brillouin (CEACNRS), France, 2015)
[19] R.A. Young and D.B. Wiles, Profile shape functions in Rietveld refinements, J. Appl. Crystallogr. 15, 430–438 (1982),
https://doi.org/10.1107/S002188988201231X
[20] J.-F. Bérar and G. Baldinozzi, Modeling of line-shape asymmetry in powder diffraction, J. Appl. Crystallogr. 26, 128–129 (1993),
https://doi.org/10.1107/S0021889892009725
[21] W.A. Dollase, Correction of intensities for preferred orientation in powder diffractometry: application of the March model, J. Appl. Crystallogr. 19, 267–272 (1986),
https://doi.org/10.1107/S0021889886089458
[22] E. Jansen, W. Schäfer, and G. Will, R-values in analysis of powder diffraction data using Rietveld refinement, J. Appl. Crystallogr. 27, 492–496 (1994),
https://doi.org/10.1107/S0021889893012348
[23] I.P. Studenyak, M. Kranjčec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, A. Kezionis, E. Kazakevicius, and T. Salkus, Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor, J. Phys. Chem. Solids 70, 1478–1481 (2009),
https://doi.org/10.1016/j.jpcs.2009.09.003