References
/
Nuorodos
[1] B. Ferguson and X.-C. Zhang, Materials for terahertz science
and technology, Nat. Mater.
1(1), 26 (2002),
https://doi.org/10.1038/nmat708
[2] M. Naftaly and R.E. Miles, Terahertz time-domain
spectroscopy for material characterization, Proc. IEEE
95(8),
1658–1665 (2007),
https://doi.org/10.1109/JPROC.2007.898835
[3] C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M.
Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch,
Terahertz imaging: applications and perspectives, Appl. Opt.
49(19),
E48–E57 (2010),
https://doi.org/10.1364/AO.49.000E48
[4] E.V. Yakovlev, K.I. Zaytsev, I.N. Fokina, V.E. Karasik, and
S.O. Yurchenko, Nondestructive testing of polymer composite
materials using THz radiation, J. Phys. Conf. Ser.
486(1),
012008 (2014),
https://doi.org/10.1088/1742-6596/486/1/012008
[5] S.F. Federici, B. Schulkin, F. Huang, D. Gary, B. Barat, F.
Oliveira, and D. Zimdars, THz imaging and sensing for security
applications – explosives, weapons and drugs, Semicond. Sci.
Technol.
20(7), S266 (2005),
https://doi.org/10.1088/0268-1242/20/7/018
[6] X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y.
Luo, Biomedical applications of terahertz spectroscopy and
imaging, Trends Biotechnol.
34(10), 810–824 (2016),
https://doi.org/10.1016/j.tibtech.2016.04.008
[7] S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies,
M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman,
G.P. Williams, et al., The 2017 terahertz science and technology
roadmap, J. Phys. D
50(4), 043001 (2017),
https://doi.org/10.1088/1361-6463/50/4/043001
[8] D.H. Auston, Picosecond optoelectronic switching and gating
in silicon, Appl. Phys. Lett.
26(3), 101–103 (1975),
https://doi.org/10.1063/1.88079
[9] M. Hangyo, M. Tani, and T. Nagashima, Terahertz time-domain
spectroscopy of solids: a review, Int. J. Infrared Millimeter
Waves
26(12), 1661–1690 (2005),
https://doi.org/10.1007/s10762-005-0288-1
[10] D.H. Auston, K.P. Cheung, and P.R. Smith, Picosecond
photoconducting Hertzian dipoles, Appl. Phys. Lett.
45(3),
284–286 (1984),
https://doi.org/10.1063/1.95174
[11] M. Tani, K. Sakai, and H. Mimura, Ultrafast photoconductive
detectors based on semi-insulating GaAs and InP, Jpn. J. Appl.
Phys.
36(9A), L1175 (1997),
https://doi.org/10.1143/JJAP.36.L1175
[12] S. Kono, M. Tani, P. Gu, and K. Sakai, Detection of up to
20 THz with a low-temperature-grown GaAs photoconductive antenna
gated with 15 fs light pulses, Appl. Phys. Lett.
77(25),
4104–4106 (2000),
https://doi.org/10.1063/1.1333403
[13] A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y.
Kadoya, Detection of terahertz waves using low-temperature-grown
InGaAs with 1.56
μm pulse excitation, Appl. Phys. Lett.
90(10), 101119 (2007),
https://doi.org/10.1063/1.2712503
[14] E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H.H. Tan, C.
Jagadish, and M.B. Johnston, An ion-implanted InP receiver for
polarization resolved terahertz spectroscopy, Opt. Express
15(11),
7047–7057 (2007),
https://doi.org/10.1364/OE.15.007047
[15] P. Parkinson, H.J. Joyce, Q. Gao, H.H. Tan, X. Zhang, J.
Zou, C. Jagadish, L.M. Herz, and M.B. Johnston, Carrier lifetime
and mobility enhancement in nearly defect-free core–shell
nanowires measured using time-resolved terahertz spectroscopy,
Nano Lett.
9(9), 3349–3353 (2009),
https://doi.org/10.1021/nl9016336
[16] H.J. Joyce, C.J. Docherty, Q. Gao, H.H. Tan, C. Jagadish,
J. Lloyd-Hughes, L.M. Herz, and M.B. Johnston, Electronic
properties of GaAs, InAs and InP nanowires studied by terahertz
spectroscopy, Nanotechnology
24(21), 214006 (2013),
https://doi.org/10.1088/0957-4484/24/21/214006
[17] H.J. Joyce, S.A. Baig, P. Parkinson, C.L. Davies, J.L.
Boland, H.H. Tan, C. Jagadish, L.M. Herz, and M.B. Johnston, The
influence of surfaces on the transient terahertz conductivity
and electron mobility of GaAs nanowires, J. Phys. D
50(22),
224001 (2017),
https://doi.org/10.1088/1361-6463/aa6a8f
[18] N. Jiang, Q. Gao, P. Parkinson, J. Wong-Leung, S.
Mokkapati, S. Breuer, H.H. Tan, C.L. Zheng, J. Etheridge, and C.
Jagadish, Enhanced minority carrier lifetimes in GaAs/AlGaAs
core–shell nanowires through shell growth optimization, Nano
Lett.
13(11), 5135–5140 (2013),
https://doi.org/10.1021/nl4023385
[19] H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Y. Kim, X.
Zhang, Y. Guo, and J. Zou, Twin-free uniform epitaxial GaAs
nanowires grown by a two-temperature process, Nano Lett.
7(4),
921–926 (2007),
https://doi.org/10.1021/nl062755v
[20] J.L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini,
C.L. Davies, F. Jabeen, H.J. Joyce, L.M. Herz, A. Fontcuberta i
Morral, and M.B. Johnston, Increased photoconductivity lifetime
in GaAs nanowires by controlled n-type and p-type doping, ACS
Nano
10(4), 4219–4227 (2016),
https://doi.org/10.1021/acsnano.5b07579
[21] T. Burgess, D. Saxena, S. Mokkapati, Z. Li, C.R. Hall, J.A.
Davis, Y. Wang, L.M. Smith, L. Fu, and P. Caroff,
Doping-enhanced radiative efficiency enables lasing in
unpassivated GaAs nanowires, Nat. Commun.
7, 11927
(2016),
https://doi.org/10.1038/ncomms11927
[22] J.L. Boland, S. Conesa-Boj, P. Parkinson, G.
Tütüncüoglu, F. Matteini, D. Rüffer, A. Casadei, F.
Amaduzzi, F. Jabeen, C.L. Davies, et al, Modulation doping of
GaAs/AlGaAs core–shell nanowires with effective defect
passivation and high electron mobility, Nano Lett.
15(2),
1336–1342 (2015),
https://doi.org/10.1021/nl504566t
[23] N. Jiang, P. Parkinson, Q. Gao, S. Breuer, H.H. Tan, J.
Wong-Leung, and C. Jagadish, Long minority carrier lifetime in
Au-catalyzed GaAs/Al
xGa
1–xAs
core–shell nanowires, Appl. Phys. Lett.
101(2), 023111
(2012),
https://doi.org/10.1063/1.4735002
[24] K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.N. Guo,
F. Wang, H.J. Joyce, J.L. Boland, H.H. Tan, C. Jagadish, and
M.B. Johnston, Single nanowire photoconductive terahertz
detectors, Nano Lett.
15(1), 206–210 (2015),
https://doi.org/10.1021/nl5033843
[25] H.J. Joyce, P. Parkinson, N. Jiang, C.J. Docherty, Q. Gao,
H.H. Tan, C. Jagadish, L.M. Herz, and M.B. Johnston, Electron
mobilities approaching bulk limits in “surface-free” GaAs
nanowires, Nano Lett.
14(10), 5989–5994 (2014),
https://doi.org/10.1021/nl503043p
[26] E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H.H. Tan, C.
Jagadish, and M.B. Johnston, Photoconductive response correction
for detectors of terahertz radiation, J. Appl. Phys.
104(5),
053113 (2008),
https://doi.org/10.1063/1.2969035
[27] K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.N. Guo,
F. Wang, H.J. Joyce, J.L. Boland, M.B. Johnston, H.H. Tan, and
C. Jagadish, Single GaAs/AlGaAs nanowire photoconductive
terahertz detectors, in:
Proceedings of the 2014 Conference
on Optoelectronic and Microelectronic Materials & Devices
(COMMAD) (Institute of Electrical and Electronics
Engineers (IEEE), Piscataway, NJ, 2014) pp. 221–222,
https://doi.org/10.1109/COMMAD.2014.7038695
[28] H.J. Joyce, J.L. Boland, C.L. Davies, S.A. Baig, and M.B.
Johnston, A review of the electrical properties of semiconductor
nanowires: insights gained from terahertz conductivity
spectroscopy, Semicond. Sci. Technol.
31(10), 103003
(2016),
https://doi.org/10.1088/0268-1242/31/10/103003
[29] K. Peng, P. Parkinson, J.L. Boland, Q. Gao, Y.C. Wenas,
C.L. Davies, Z.Y. Li, L. Fu, M.B. Johnston, H.H. Tan, and C.
Jagadish, Broadband phase-sensitive single InP nanowire
photoconductive terahertz detectors, Nano Lett.
16(8),
4925–4931 (2016),
https://doi.org/10.1021/acs.nanolett.6b01528
[30] K. Peng, P. Parkinson, Q. Gao, J.L. Boland, Z.Y. Li, F.
Wang, S. Mokkapati, L. Fu, M.B. Johnston, H.H. Tan, and C.
Jagadish, Single n
+-i-n
+ InP nanowires for
highly sensitive terahertz detection, Nanotechnology
28(12),
12520 (2017),
https://doi.org/10.1088/1361-6528/aa5d80
[31] W. Withayachumnankul and M. Naftaly, Fundamentals of
measurement in terahertz time-domain spectroscopy, J. Infrared
Millim. Terahertz Waves
35(8), 610–637 (2014),
https://doi.org/10.1007/s10762-013-0042-z
[32] E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser,
H. Tan, and C. Jagadish, Polarization-sensitive terahertz
detection by multicontact photoconductive receivers, Appl. Phys.
Lett.
86(25), 254102 (2005),
https://doi.org/10.1063/1.1951051