[PDF]    https://doi.org/10.3952/physics.v58i1.3649

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 15–23 (2018)


DISTINGUISHING CAP AND CORE CONTRIBUTIONS TO THE PHOTOCONDUCTIVE TERAHERTZ RESPONSE OF SINGLE GaAs BASED CORE–SHELL–CAP NANOWIRE DETECTORS
Kun Penga,b, Patrick Parkinsonc, Lan Fua, Qiang Gaoa, Jessica Bolandb, Ya-Nan Guoa, Nian Jiana, Hark Hoe Tana, Michael B. Johnstonb, and Chennupati Jagadisha
aDepartment of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
bDepartment of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
cSchool of Physics and Astronomy and the Photon Science Institute, University of Manchester, Manchester M13 9PL, United Kingdom
E-mail: kun.peng@physics.ox.ac.uk

Received 1 February 2018; accepted 22 March 2018

GaAs nanowires are promising candidates for advanced optoelectronic devices, despite their high surface recombination velocity and large surface-area-to-volume ratio, which renders them problematic for applications that require efficient charge collection and long charge-carrier lifetimes. Overcoating a bare GaAs nanowire core with an optimized larger-bandgap AlGaAs shell, followed by a capping layer of GaAs to prevent oxidation, has proven an effective way to passivate the nanowire surface and thereby improve electrical properties for enhanced device performance. However, it is difficult to quantify and distinguish the contributions between the nanowire core and cap layer when measuring the optoelectronic properties of a nanowire device. Here, we investigated the photoconductive terahertz (THz) response characteristics of single GaAs/AlGaAs/GaAs core–shell–cap nanowire detectors designed for THz time-domain spectroscopy. We present a detailed study of the contributions of the GaAs cap layer and GaAs core on the ultrafast optoelectronic performance of the detector. We show that both the GaAs cap and core contribute to the photoconductive signal in proportion to their relative volume in the nanowire. By increasing the cap volume ratio to above 90% of the total GaAs volume, a quasi-direct-sampling type photoconductive nanowire detector can be achieved that is highly desirable for low-noise and fast data acquisition detection.
Keywords: GaAs, nanowire devices, ultrafast spectroscopy
PACS: 81.05.Ea, 81.07.Gf, 85.60.Bt, 07.57.Kp, 78.47.jh

APVALKALO IR ŠERDIES INDĖLIŲ ATSKYRIMAS TERAHERCINAME GAAS ŠERDIES-KEVALO-APVALKALO TIPO VIENO NANOLAIDO DETEKTORIAUS FOTOLAIDUMO ATSAKE
Kun Penga,b, Patrick Parkinsonc, Lan Fua, Qiang Gaoa, Jessica Bolandb, Ya-Nan Guoa, Nian Jiana, Hark Hoe Tana, Michael B. Johnstonb, Chennupati Jagadisha

aAustralijos nacionalinis universitetas, Kanbera, Australija
bOksfordo universitetas, Oksfordas, Jungtinė Karalystė
bMančesterio universitetas, Mančesteris, Jungtinė Karalystė


References / Nuorodos

[1] B. Ferguson and X.-C. Zhang, Materials for terahertz science and technology, Nat. Mater. 1(1), 26 (2002),
https://doi.org/10.1038/nmat708
[2] M. Naftaly and R.E. Miles, Terahertz time-domain spectroscopy for material characterization, Proc. IEEE 95(8), 1658–1665 (2007),
https://doi.org/10.1109/JPROC.2007.898835
[3] C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, Terahertz imaging: applications and perspectives, Appl. Opt. 49(19), E48–E57 (2010),
https://doi.org/10.1364/AO.49.000E48
[4] E.V. Yakovlev, K.I. Zaytsev, I.N. Fokina, V.E. Karasik, and S.O. Yurchenko, Nondestructive testing of polymer composite materials using THz radiation, J. Phys. Conf. Ser. 486(1), 012008 (2014),
https://doi.org/10.1088/1742-6596/486/1/012008
[5] S.F. Federici, B. Schulkin, F. Huang, D. Gary, B. Barat, F. Oliveira, and D. Zimdars, THz imaging and sensing for security applications – explosives, weapons and drugs, Semicond. Sci. Technol. 20(7), S266 (2005),
https://doi.org/10.1088/0268-1242/20/7/018
[6] X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, Biomedical applications of terahertz spectroscopy and imaging, Trends Biotechnol. 34(10), 810–824 (2016),
https://doi.org/10.1016/j.tibtech.2016.04.008
[7] S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, et al., The 2017 terahertz science and technology roadmap, J. Phys. D 50(4), 043001 (2017),
https://doi.org/10.1088/1361-6463/50/4/043001
[8] D.H. Auston, Picosecond optoelectronic switching and gating in silicon, Appl. Phys. Lett. 26(3), 101–103 (1975),
https://doi.org/10.1063/1.88079
[9] M. Hangyo, M. Tani, and T. Nagashima, Terahertz time-domain spectroscopy of solids: a review, Int. J. Infrared Millimeter Waves 26(12), 1661–1690 (2005),
https://doi.org/10.1007/s10762-005-0288-1
[10] D.H. Auston, K.P. Cheung, and P.R. Smith, Picosecond photoconducting Hertzian dipoles, Appl. Phys. Lett. 45(3), 284–286 (1984),
https://doi.org/10.1063/1.95174
[11] M. Tani, K. Sakai, and H. Mimura, Ultrafast photoconductive detectors based on semi-insulating GaAs and InP, Jpn. J. Appl. Phys. 36(9A), L1175 (1997),
https://doi.org/10.1143/JJAP.36.L1175
[12] S. Kono, M. Tani, P. Gu, and K. Sakai, Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses, Appl. Phys. Lett. 77(25), 4104–4106 (2000),
https://doi.org/10.1063/1.1333403
[13] A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation, Appl. Phys. Lett. 90(10), 101119 (2007),
https://doi.org/10.1063/1.2712503
[14] E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H.H. Tan, C. Jagadish, and M.B. Johnston, An ion-implanted InP receiver for polarization resolved terahertz spectroscopy, Opt. Express 15(11), 7047–7057 (2007),
https://doi.org/10.1364/OE.15.007047
[15] P. Parkinson, H.J. Joyce, Q. Gao, H.H. Tan, X. Zhang, J. Zou, C. Jagadish, L.M. Herz, and M.B. Johnston, Carrier lifetime and mobility enhancement in nearly defect-free core–shell nanowires measured using time-resolved terahertz spectroscopy, Nano Lett. 9(9), 3349–3353 (2009),
https://doi.org/10.1021/nl9016336
[16] H.J. Joyce, C.J. Docherty, Q. Gao, H.H. Tan, C. Jagadish, J. Lloyd-Hughes, L.M. Herz, and M.B. Johnston, Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy, Nanotechnology 24(21), 214006 (2013),
https://doi.org/10.1088/0957-4484/24/21/214006
[17] H.J. Joyce, S.A. Baig, P. Parkinson, C.L. Davies, J.L. Boland, H.H. Tan, C. Jagadish, L.M. Herz, and M.B. Johnston, The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires, J. Phys. D 50(22), 224001 (2017),
https://doi.org/10.1088/1361-6463/aa6a8f
[18] N. Jiang, Q. Gao, P. Parkinson, J. Wong-Leung, S. Mokkapati, S. Breuer, H.H. Tan, C.L. Zheng, J. Etheridge, and C. Jagadish, Enhanced minority carrier lifetimes in GaAs/AlGaAs core–shell nanowires through shell growth optimization, Nano Lett. 13(11), 5135–5140 (2013),
https://doi.org/10.1021/nl4023385
[19] H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Y. Kim, X. Zhang, Y. Guo, and J. Zou, Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process, Nano Lett. 7(4), 921–926 (2007),
https://doi.org/10.1021/nl062755v
[20] J.L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C.L. Davies, F. Jabeen, H.J. Joyce, L.M. Herz, A. Fontcuberta i Morral, and M.B. Johnston, Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping, ACS Nano 10(4), 4219–4227 (2016),
https://doi.org/10.1021/acsnano.5b07579
[21] T. Burgess, D. Saxena, S. Mokkapati, Z. Li, C.R. Hall, J.A. Davis, Y. Wang, L.M. Smith, L. Fu, and P. Caroff, Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires, Nat. Commun. 7, 11927 (2016),
https://doi.org/10.1038/ncomms11927
[22] J.L. Boland, S. Conesa-Boj, P. Parkinson, G. Tütüncüoglu, F. Matteini, D. Rüffer, A. Casadei, F. Amaduzzi, F. Jabeen, C.L. Davies, et al, Modulation doping of GaAs/AlGaAs core–shell nanowires with effective defect passivation and high electron mobility, Nano Lett. 15(2), 1336–1342 (2015),
https://doi.org/10.1021/nl504566t
[23] N. Jiang, P. Parkinson, Q. Gao, S. Breuer, H.H. Tan, J. Wong-Leung, and C. Jagadish, Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1–xAs core–shell nanowires, Appl. Phys. Lett. 101(2), 023111 (2012),
https://doi.org/10.1063/1.4735002
[24] K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.N. Guo, F. Wang, H.J. Joyce, J.L. Boland, H.H. Tan, C. Jagadish, and M.B. Johnston, Single nanowire photoconductive terahertz detectors, Nano Lett. 15(1), 206–210 (2015),
https://doi.org/10.1021/nl5033843
[25] H.J. Joyce, P. Parkinson, N. Jiang, C.J. Docherty, Q. Gao, H.H. Tan, C. Jagadish, L.M. Herz, and M.B. Johnston, Electron mobilities approaching bulk limits in “surface-free” GaAs nanowires, Nano Lett. 14(10), 5989–5994 (2014),
https://doi.org/10.1021/nl503043p
[26] E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H.H. Tan, C. Jagadish, and M.B. Johnston, Photoconductive response correction for detectors of terahertz radiation, J. Appl. Phys. 104(5), 053113 (2008),
https://doi.org/10.1063/1.2969035
[27] K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.N. Guo, F. Wang, H.J. Joyce, J.L. Boland, M.B. Johnston, H.H. Tan, and C. Jagadish, Single GaAs/AlGaAs nanowire photoconductive terahertz detectors, in: Proceedings of the 2014 Conference on Optoelectronic and Microelectronic Materials & Devices (COMMAD) (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, 2014) pp. 221–222,
https://doi.org/10.1109/COMMAD.2014.7038695
[28] H.J. Joyce, J.L. Boland, C.L. Davies, S.A. Baig, and M.B. Johnston, A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy, Semicond. Sci. Technol. 31(10), 103003 (2016),
https://doi.org/10.1088/0268-1242/31/10/103003
[29] K. Peng, P. Parkinson, J.L. Boland, Q. Gao, Y.C. Wenas, C.L. Davies, Z.Y. Li, L. Fu, M.B. Johnston, H.H. Tan, and C. Jagadish, Broadband phase-sensitive single InP nanowire photoconductive terahertz detectors, Nano Lett. 16(8), 4925–4931 (2016),
https://doi.org/10.1021/acs.nanolett.6b01528
[30] K. Peng, P. Parkinson, Q. Gao, J.L. Boland, Z.Y. Li, F. Wang, S. Mokkapati, L. Fu, M.B. Johnston, H.H. Tan, and C. Jagadish, Single n+-i-n+ InP nanowires for highly sensitive terahertz detection, Nanotechnology 28(12), 12520 (2017),
https://doi.org/10.1088/1361-6528/aa5d80
[31] W. Withayachumnankul and M. Naftaly, Fundamentals of measurement in terahertz time-domain spectroscopy, J. Infrared Millim. Terahertz Waves 35(8), 610–637 (2014),
https://doi.org/10.1007/s10762-013-0042-z
[32] E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, and C. Jagadish, Polarization-sensitive terahertz detection by multicontact photoconductive receivers, Appl. Phys. Lett. 86(25), 254102 (2005),
https://doi.org/10.1063/1.1951051