[PDF]    https://doi.org/10.3952/physics.v58i1.3649

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 24–37 (2018)


SECOND ORDER NONLINEAR OPTICAL PROCESSES IN [111] CUBIC CRYSTALS FOR TERAHERTZ OPTOELECTRONICS
Gwenaël Gaborit, Federico Sanjuan, and Jean-Louis Coutaz
IMEP-LAHC, University Savoie Mont-Blanc, 73 763 Le Bourget du Lac Cedex, France
E-mail: coutaz@univ-savoie.fr

Received 12 February 2018; accepted 22 March 2018

In this paper, we give an overview of emission and detection of terahertz electromagnetic pulses using, respectively, optical rectification and electro-optic effect in [111] zinc blende crystals. This crystal orientation allows us to generate and read any polarization state of the THz beam only by controlling the polarization state of the laser beam that excites or probes the emitting and receiving crystals. This technique is very useful for polarimetric terahertz spectroscopic studies.
Keywords: THz optoelectronics
PACS: 85.60.-q

ANTROSIOS EILĖS NETIESINIAI OPTINIAI VYKSMAI [111] KUBINIUOSE KRISTALUOSE TERAHERCINEI OPTOELEKTRONIKAI
Gwenaël Gaborit, Federico Sanjuan, Jean-Louis Coutaz

Savojos Monblano universitetas, Šamberi, Prancūzija


References / Nuorodos

[1] D.T. Emerson, The work of Jagadis Chandra Bose: 100 years of millimeter-wave research, IEEE Trans. Microw. Theory Techn. 45, 2267–2273 (1997),
https://doi.org/10.1109/22.643830
[2] E.D. Palik, History of far-infrared research I. The Rubens era, J. Opt. Soc. Am. 67, 857–865 (1977),
https://doi.org/10.1364/JOSA.67.000857
[3] E.F. Nichols and J.D. Tear, Short electric waves, Phys. Rev. 21, 587–610 (1923),
https://doi.org/10.1103/PhysRev.21.587
[4] K.P. Cheung and D.H. Auston, A novel technique for measuring far-infrared absorption and dispersion, Infrared Phys. 26, 23–27 (1986),
https://doi.org/10.1016/0020-0891(86)90043-6
[5] E. Matsubara, M. Nagai, and M. Ashida, Coherent infrared spectroscopy system from terahertz to near-infrared using air plasma produced by 10-fs pulses, J. Opt. Soc. Am. B 30, 1627–1630 (2013),
https://doi.org/10.1364/JOSAB.30.001627
[6] A. Leitenstorfer, K.A. Nelson, K. Reimann, and K. Tanaka, Focus on nonlinear terahertz studies, New J. Phys. 16, 045016 (2014),
https://doi.org/10.1088/1367-2630/16/4/045016
[7] A. Krotkus, Semiconductors for terahertz photonics applications, J. Phys. D 43, 273001 (2010),
https://doi.org/10.1088/0022-3727/43/27/273001
[8] Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, Electro-optic transceivers for terahertz-wave applications, J. Opt. Soc. Am. B 18, 823–831 (2001),
https://doi.org/10.1364/JOSAB.18.000823
[9] H. Minamide, J. Zhang, R. Guo, K. Miyamoto, S. Ohno, and H. Ito, High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal, Appl. Phys. Lett. 97, 121106 (2010),
https://doi.org/10.1063/1.3489097
[10] M.C. Hoffmann, K.-L. Yeh, J. Hebling, and K.A. Nelson, Efficient terahertz generation by optical rectification at 1035 nm, Opt. Express 15, 11706 (2007),
https://doi.org/10.1364/OE.15.011706
[11] A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R.U.A. Khan, and P. Günter, Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment, J. Opt. Soc. Am. B 23, 1822–1835 (2006),
https://doi.org/10.1364/JOSAB.23.001822
[12] Q. Wu and X.-C. Zhang, Design and characterization of traveling-wave electrooptic terahertz sensors, IEEE J. Sel. Top. Quant. Electron. 2, 693–700 (1996),
https://doi.org/10.1109/2944.571769
[13] H. Ito, K. Suizu, T. Yamashita, A. Awahara, and T. Sato, Random frequency accessible broad tunable terahertz-wave source using phase-matched 4 dimethylamino-N-methyl-4-stilbazolium tosylate crystal, Jpn. J. Appl. Phys. 46, 7321–7324 (2007),
https://doi.org/10.1143/JJAP.46.7321
[14] L. Duvillaret, S. Rialland, and J.-L. Coutaz, Electro-optic sensors for electric field measurements. I. Theoretical comparison among different modulation techniques, J. Opt. Soc. Am. B 19, 2692–2703 (2002),
https://doi.org/10.1364/JOSAB.19.002692
[15] L. Duvillaret, S. Rialland, and J.-L. Coutaz, Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation, J. Opt. Soc. Am. B 19, 2704–2715 (2002),
https://doi.org/10.1364/JOSAB.19.002704
[16] G. Gaborit, J.-L. Coutaz, and L. Duvillaret, Vectorial electric field measurement using isotropic electro-optic crystals, Appl. Phys. Lett. 90, 241118 (2007),
https://doi.org/10.1063/1.2748364
[17] N.C. van der Valk, W.A. van der Marel, and P.C. Planken, Terahertz polarization imaging, Opt. Lett. 30, 2802–2804 (2005),
https://doi.org/10.1364/OL.30.002802
[18] F. Zernike, Jr. and P.R. Berman, Generation of far-infrared as a difference frequency, Phys. Rev. Lett. 15, 999–1001 (1965),
https://doi.org/10.1103/PhysRevLett.15.999
[19] D.W. Faries, K.A. Gehring, P.L. Richards, and Y.R. Shen, Tunable far-infrared radiation generated from the difference frequency between two ruby lasers, Phys. Rev. 180, 363–365 (1969),
https://doi.org/10.1103/PhysRev.180.363
[20] N. Van Tran and C.K.N. Patel, Free-carrier magneto-optical effects in far-infrared difference-frequency generation in semiconductors, Phys. Rev. Lett. 22, 463–465 (1969),
https://doi.org/10.1103/PhysRevLett.22.463
[21] F. Zernike, Temperature-dependent phase matching for far-infrared difference-frequency generation in InSb, Phys. Rev. Lett. 22, 931–933 (1969),
https://doi.org/10.1103/PhysRevLett.22.931
[22] J.M. Yarborough, S.S. Sussman, H.E. Puthoff, R.H. Pantell, and B.C. Johnson, Efficient tunable optical emission from LiNbO3 without a resonator, Appl. Phys. Lett. 15, 102–104 (1969),
https://doi.org/10.1063/1.1652910
[23] J. Morris and Y.R. Shen, Far-infrared generation by picosecond pulses in electrooptic materials, Opt. Commun. 3, 81–84 (1971),
https://doi.org/10.1016/0030-4018(71)90182-9
[24] K.H. Yang, P.L. Richards, and Y.R. Shen, Generation of far-infrared radiation by picosecond light pulses in LiNbO3, Appl. Phys. Lett. 19, 320–322 (1971),
https://doi.org/10.1063/1.1653935
[25] A. Bonvalet, M. Joffre, J.-L. Martin, and A. Migus, Generation of ultrabroad band femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate, Appl. Phys. Lett. 67, 2907–2909 (1995),
https://doi.org/10.1063/1.114838
[26] P.Y. Han and X.-C. Zhang, Coherent, broadband mid infrared terahertz beam sensors, Appl. Phys. Lett. 73, 3049–3051 (1998),
https://doi.org/10.1063/1.122668
[27] P.Y. Han and X.-C. Zhang, Free-space coherent broadband terahertz time-domain spectroscopy, Meas. Sci. Technol. 12, 1747–1756 (2001),
https://doi.org/10.1088/0957-0233/12/11/301
[28] N. Amer, W.C. Hurlbut, B.J. Norton, Y.-S. Lee, and T.B. Norris, Generation of terahertz pulses with arbitrary elliptical polarization, Appl. Phys. Lett. 87, 221111 (2005),
https://doi.org/10.1063/1.2138351
[29] M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, and M. Kuwata-Gonokami, Terahertz polarization pulse shaping with arbitrary field control, Nat. Phot. 7, 724–731 (2013),
https://doi.org/10.1038/nphoton.2013.213
[30] G. Gaborit, A. Biciunas, M. Bernier, and J.-L. Coutaz, Emitting and receiving terahertz vectorial antennas based on cubic electro-optic crystals, IEEE Trans. Terahertz Sci. Technol. 5, 828–835 (2015),
https://doi.org/10.1109/TTHZ.2015.2460452
[31] J.A. Valdmanis, G. Mourou, and C.W. Gabel, Picosecond electro-optic sampling system, Appl. Phys. Lett. 41, 211–213 (1982),
https://doi.org/10.1063/1.93485
[32] Q. Wu and X.-C. Zhang, Free‐space electro‐optic sampling of terahertz beams, Appl. Phys. Lett. 67, 3523–3525 (1995),
https://doi.org/10.1063/1.114909
[33] P.U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S.R. Keiding, and H. Helm, Detection of THz pulses by phase retardation in lithium tantalate, Phys. Rev. E 53, R3052–R3054 (1996),
https://doi.org/10.1103/PhysRevE.53.R3052
[34] A. Nahata, D.H. Auston, T.F. Heinz, and C. Wu, Coherent detection of freely propagating terahertz radiation by electro-optic sampling, Appl. Phys. Lett. 68, 150–152 (1996),
https://doi.org/10.1063/1.116130
[35] N. Yasumatsu, and S. Watanabe, Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor, Rev. Sci. Instrum. 83, 023104 (2012),
https://doi.org/10.1063/1.3683570
[36] N. Yasumatsu, A. Kasatani, K. Oguchi, and S. Watanabe, High-speed terahertz time-domain polarimeter based on an electro-optic modulation technique, App. Phys. Exp. 7, 092401 (2014),
https://doi.org/10.7567/APEX.7.092401
[37] C.M. Morris, R.V. Aguilar, A.V. Stier, and N.P. Armitage, Polarization modulation time-domain terahertz polarimetry, Opt. Express 20, 12303–12317 (2012),
https://doi.org/10.1364/OE.20.012303
[38] N. Nemoto, T. Higuchi, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulses, Opt. Express 22, 17915–17929 (2014),
https://doi.org/10.1364/OE.22.017915
[39] F. Sanjuan, G. Gaborit, and J.-L. Coutaz, Influence of two-photon absorption anisotropy on terahertz emission through optical rectification in zinc-blende crystals, J. Infrared Millim. Terahertz Waves 39, 378 (2018),
https://doi.org/10.1007/s10762-018-0468-4
[40] F. Garet, L. Duvillaret, and J.-L. Coutaz, Evidence of frequency dependent THz beam polarization in time-domain spectroscopy, repercussions on anisotropic materials characterization, Proc. SPIE 3617, 38 (1999),
https://doi.org/10.1117/12.347128
[41] C.D.W. Mosley, M. Failla, D. Prabhakaran, and J. Lloyd-Hughes, Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization, Sci. Rep. 7, 12337 (2017),
https://doi.org/10.1038/s41598-017-12568-0
[42] E. Castro-Camus, J. Lloyd-Hughes, M.B. Johnston, M.D. Fraser, H.H. Tan, and C. Jagadish, Polarization-sensitive terahertz detection by multi contact photoconductive receivers, Appl. Phys. Lett. 86, 254102 (2005),
https://doi.org/10.1063/1.1951051
[43] E. Castro-Camus and M.B. Johnston, Extraction of the anisotropic dielectric properties of materials from polarization-resolved terahertz time-domain spectra, J. Opt. A 11, 105206 (2009),
https://doi.org/10.1088/1464-4258/11/10/105206