[PDF]    https://doi.org/10.3952/physics.v58i1.3650

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 38–48 (2018)


TOWARDS GAS SENSING WITH VERTICALLY ALIGNED CARBON NANOTUBES INTERROGATED BY THz RADIATION PULSES
Wissem Zouaghia, Laith Husseinb, Mark D. Thomsona, Qamar-ul Islama, Norbert Nicolosoc, Thorsten Heinleinb, Jörg Engstlerb, Jörg J. Schneiderb, and Hartmut G. Roskosa
aPhysikalisches Institut, Goethe-Universität, D-60438 Frankfurt am Main, Germany
bFachbereich Chemie, Eduard-Zintl-Institut, Fachgebiet Anorganische Chemie, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
cFachbereich Material- und Geowissenschaften, Fachgebiet Disperse Feststoffe, Technische Universität Darmstadt, Germany
E-mail: roskos@physik.uni-frankfurt.de

Received 1 February 2018; accepted 22 March 2018

When vertically aligned carbon nanotubes (VACNT) are exposed to gases, their dielectric properties may change by mechanisms such as doping effects or a modification of the scattering channels of the mobile charge carriers of the VACNT. This report provides first data of a study which aims at an exploration of such conductivity changes in the THz frequency regime. The test gases are NH3 and SO2 which are known to act as donors, respectively as acceptors when interacting with the carbon nanotubes. Our measurements confirm the doping effects. This may open the way towards gas sensors based on the VACNT interrogated by THz radiation, where the VACNTs act as an accumulation volume for certain species contained in a gas stream.
Keywords: carbon nanotubes, terahertz spectroscopy, conductivity changes, gas sensing
PACS: 78.67.Ch, 73.63.Fg, 85.35.Kt, 07.07.Df, 34.35.+a

DUJŲ APTIKIMO GALIMYBĖS NAUDOJANT TERAHERCINIAIS IMPULSAIS ŠVITINAMUS VERTIKALIAI ORIENTUOTUS ANGLIES NANOVAMZDELIUS
Wissem Zouaghia, Laith Husseinb, Mark D. Thomsona, Qamar-ul Islama, Norbert Nicolosob, Thorsten Heinleinb, Jörg Engstlerb, Jörg J. Schneiderb, Hartmut G. Roskosa

aGėtės universitetas, Frankfurtas prie Maino, Vokietija
bDarmštato technikos universitetas, Darmštatas, Vokietija


References / Nuorodos

[1] A. Popp, O. Yilmazoglu, O. Kaldirim, J.J. Schneider, and D. Pavlidis, A self-supporting monolith of highly aligned carbon nanotubes as device structure for sensor applications, Chem. Comm. 22, 3205–3207 (2009),
https://doi.org/10.1039/b900854c
[2] D.J. Babu, M. Lange, G. Cherkashinin, A. Issanin, R. Staudt, and J.J. Schneider, Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays, Carbon 61, 616–623 (2013),
https://doi.org/10.1016/j.carbon.2013.05.045
[3] M.D. Thomson, W. Zouaghi, F. Meng, M.M. Wiecha, K. Rabia, T. Heinlein, L. Hussein, D. Babu, S. Yadav, J. Engstler, J.J. Schneider, N. Nicoloso, I. Rychetský, P. Kužel, and H.G. Roskos, Dielectric properties of vertically aligned multi-walled carbon nanotubes in the terahertz and mid-infrared range, J. Phys. D 51, 034004 (2018),
https://doi.org/10.1088/1361-6463/aa9e42
[4] W. Zouaghi, D. Voss, M. Gorath, N. Nicoloso, and H.G. Roskos, How good would the conductivity of graphene have to be to make single-layer-graphene metamaterials for terahertz frequencies feasible? Carbon 94, 301–308 (2015),
https://doi.org/10.1016/j.carbon.2015.06.077
[5] D.J. Babu, S. Yadav, T. Heinlein, G. Cherkashinin, and J.J. Schneider, Carbon dioxide plasma as a versatile medium for purification and functionalization of vertically aligned carbon nanotubes, J. Phys. Chem. C 118, 12028–12034 (2014),
https://doi.org/10.1021/jp5027515
[6] R. Joshi, J. Engstler, L. Houben, M.B. Sadan, A. Weidenkaff, P. Mandaliev, A. Issanin, and J.J. Schneider, Catalyst composition, morphology and reaction pathway in the growth of “super-long” carbon nanotubes, Chem. Cat. Chem 2, 1069–1073 (2010),
https://doi.org/10.1002/cctc.201000037
[7] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Nanotube molecular wires as chemical sensors, Science 287, 622–625 (2000),
https://doi.org/10.1126/science.287.5453.622
[8] M. Shim, A. Javey, N.W.S. Kam, and H. Dai, Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors, J. Am. Chem. Soc. 123, 11512–11513 (2001),
https://doi.org/10.1021/ja0169670
[9] W. Zouaghi, M.D. Thomson, K. Rabia, R. Hahn, V. Blank, and H.G. Roskos, Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications, Eur. J. Phys. 34, S179–S199 (2013),
https://doi.org/10.1088/0143-0807/34/6/S179
[10] D.M. Slocum, E.J. Slingerland, R.H. Giles, and T.M. Goyette, Atmospheric absorption of terahertz radiation and water vapor continuum effects, J. Quant. Spectrosc. Radiat. Transf. 127, 49–63 (2013),
https://doi.org/10.1016/j.jqsrt.2013.04.022
[11] H. Harde, J. Zhao, M. Wolff, R.A. Cheville, and D. Grischkowsky, THz time-domain spectroscopy on ammonia, J. Phys. Chem. A 105, 6038–6047 (2001),
https://doi.org/10.1021/jp0101099
[12] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6, 652–655 (2007),
https://doi.org/10.1038/nmat1967
[13] O. Leenaerts, B. Partoens, and F.M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study, Phys. Rev. B 77, 125416 (2008),
https://doi.org/10.1103/PhysRevB.77.125416
[14] N.V. Smith, Classical generalization of the Drude formula for the optical conductivity, Phys. Rev. B 64, 155106 (2001),
https://doi.org/10.1103/PhysRevB.64.155106
[15] M. Bedewy, E.R. Meshot, M.J. Reinker, and A.J. Hart, Population growth dynamics of carbon nanotubes, ACS Nano 5, 8974–8989 (2011),
https://doi.org/10.1021/nn203144f
[16] Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R.D. Piner, and R.S. Ruoff, Detection of sulfur dioxide gas with graphene field effect transistor, Appl. Phys. Lett. 100, 163114 (2012),
https://doi.org/10.1063/1.4704803
[17] L. Shao, G. Chen, H. Ye, Y. Wu, Z. Qiao, Y. Zhu, and H. Niu, Sulfur dioxide adsorbed on graphene and heteroatom-doped graphene: a first-principles study, Eur. Phys. J. B 86, 54 (2013),
https://doi.org/10.1140/epjb/e2012-30853-y
[18] A.A. Koós, R.J. Nicholls, F. Dillon, K. Kertész, L.P. Biró, A. Crossley, and N. Grobert, Tailoring gas sensing properties of multi-walled carbon nanotubes by in situ modication with Si, P, and N, Carbon 50, 2816–2823 (2012),
https://doi.org/10.1016/j.carbon.2012.02.047
[19] L. Hussein, Towards a fine-tuning of surface chemistry in aligned carbon nanotubes induced by nitrogen plasma discharge post-treatment: a combined microscopic and spectroscopic study, RSC Adv. 6, 13088–13100 (2016),
https://doi.org/10.1039/c5ra22156k