Adam Wincukiewicz, Wojciech Mech, Sylwia Grankowska, Agnieszka
Wolos, Aneta Drabinska, Tomasz Slupinski, Krzysztof Piotr Korona,
and Maria Kaminska
References
/
Nuorodos
[1] D. Curie,
Luminescence in Crystals (Wiley, New York,
1963),
https://www.amazon.co.uk/Luminescence-crystals-Daniel-Curie/dp/B0000CLN77/
[2] Y.P. Varshni, G.E.J. Garlick, and A.E. Yunovich,
Radiative
Recombination in Semiconductors (Nauka, Moscow, 1972) [in
Russian]
[3] V.L. Bonch-Bruevich and S.G. Kalashnikov,
The Physics of
Semiconductors (Nauka, Moscow, 1990) [in Russian],
https://www.amazon.com/Physics-Semiconductors-Russian-Kalashnikov-Bonch-Bruevich/dp/5020140325
[4] H. Spanggaard and F.C. Krebs, A brief history of the
development of organic and polymeric photovoltaics, Sol. Energy
Mater. Sol. Cells
83, 125–146 (2004),
https://doi.org/10.1016/j.solmat.2004.02.021
[5] C. Deibel and V. Dyakonov, Polymer–fullerene bulk
heterojunction solar cells, Rep. Prog. Phys.
73, 96401
(2010),
https://doi.org/10.1088/0034-4885/73/9/096401
[6] J. Behrends, A. Sperlich, A. Schnegg, T. Biskup, C.
Teutloff, K. Lips, V Dyakonov, and R. Bittl, Direct detection of
photoinduced charge transfer complexes in polymer fullerene
blends, Phys. Rev. B
85, 125206 (2012),
https://doi.org/10.1103/PhysRevB.85.125206
[7]
Research Cell Efficiency Records, the latest chart
(NREL),
https://www.nrel.gov/pv/national-center-for-photovoltaics.html
[8] K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O.
Portugall, G.E. Eperon, J.T.-W. Wang, T. Stergiopoulos, S.D.
Stranks, H. Snaith, and R.J. Nicholas, Determination of the
exciton binding energy and effective masses for methylammonium
and formamidinium lead tri-halide perovskite semiconductors,
Energy Environ. Sci.
9, 962–970 (2016),
https://doi.org/10.1039/C5EE03435C
[9] B.I. Shklovskii and A.L. Efros,
Electronic Properties of
Doped Semiconductors (Springer-Verlag, Berlin, Heidelberg,
New York, Tokyo, 1984),
https://doi.org/10.1007/978-3-662-02403-4
[10] M. Kaminska and E.R. Weber, Low temperature GaAs:
electrical and optical properties, Mater. Sci. Forum
83–87,
1033–1044 (1992),
https://doi.org/10.4028/www.scientific.net/MSF.83-87.1033
[11] H. Rohdin, M.W. Muller, and C.M. Wolfe, A model of Cr in
GaAs, J. Phys. Chem. Solids
44, 1049–1057 (1983),
https://doi.org/10.1016/0022-3697(83)90087-2
[12] G.M. Martin, A. Mitonneau, and A. Mircea, Electron traps in
bulk and epitaxial GaAs crystals, Electron. Lett.
13,
191–193 (1997),
https://doi.org/10.1049/el:19770140
[13] E.R. Weber, H. Ennen, U. Kaufmann, J. Windscheif, J.
Schneider, and T. Wosinski, Identification of AsGa antisites in
plastically deformed GaAs, J. Appl. Phys.
53, 6140–6143
(1982),
https://doi.org/10.1063/1.331577
[14] M. Kaminska, M. Skowronski, J. Lagowski, J.M. Parsey, and
H.C. Gatos, Intracenter transitions in the dominant deep level
(EL2) in GaAs, Appl. Phys. Lett.
43, 302–304 (1983),
https://doi.org/10.1063/1.94293
[15] M. Kaminska, M. Skowronski, and W. Kuszko, Identification
of the 0.82-eV electron trap, EL2 in GaAs, as an isolated
antisite arsenic defect, Phys. Rev. Lett.
55, 2204–2207
(1985),
https://doi.org/10.1103/PhysRevLett.55.2204
[16] F.W. Smith, A.R. Calawa, C.-L. Chen, M.J. Manfra, and L.J.
Mahoney, New MBE buffer used to eliminate backgating in GaAs
MESFETs, IEEE Electron Device Lett.
9, 77–80 (1988),
https://doi.org/10.1109/55.2046
[17] M. Kaminska, Z. Liliental-Weber, E.R. Weber, T. George,
J.B. Kortright, F.W. Smith, B.-Y. Tsaur, and A.R. Calawa,
Structural properties of As-rich GaAs grown by molecular beam
epitaxy at low temperatures, Appl. Phys. Lett.
54,
1881–1883 (1989),
https://doi.org/10.1063/1.101229
[18] A.C. Warren, J.M. Woodall, J.L. Freeouf, D. Grischkowsky,
D.T. McInturff, M.R. Melloch, and N. Otsuka, Arsenic
precipitates and the semiinsulating properties of GaAs buffer
layers grown by low-temperature molecular beam epitaxy, Appl.
Phys. Lett.
57, 1331–1333 (1990),
https://doi.org/10.1063/1.103474
[19] K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R.
Adomavicius, G. Molis, and S. Marcinkevicius, GaBiAs: A material
for optoelectronic terahertz devices, Appl. Phys. Lett.
88,
201112 (2006),
https://doi.org/10.1063/1.2205180
[20] R. Adomavicius, A. Urbanowicz, G. Molis, A. Krotkus, and E.
Satkovskis, Terahertz emission from p-InAs due to the
instantaneous polarization, Appl. Phys. Lett.
85,
2463–2465 (2004),
https://doi.org/10.1063/1.1795980
[21] A. Krotkus, S. Marcinkevicius, J. Jasinski, M. Kaminska,
H.H. Tan, and C. Jagadish, Picosecond carrier lifetime in GaAs
implanted with high-doses of As ions – an alternative material
to low-temperature GaAs for optoelectronic applications, Appl.
Phys. Lett.
66, 3304–3306 (1995),
https://doi.org/10.1063/1.113738
[22] A. Krotkus, Semiconductors for terahertz photonics
applications, J. Phys. D
27, 273001 (2010),
https://doi.org/10.1088/0022-3727/43/27/273001
[23] J.F. Scott, H.J. Fan, S. Kawasaki, J. Banys, M. Ivanov, A.
Krotkus, J. Macutkevic, R. Blinc, V.V. Laguta, P. Cevc, J.S.
Liu, and A.L. Kholkin, Terahertz emission from tubular Pb(Zr,
Ti)O
3 nanostructures, Nano Lett.
8, 4404–4409
(2008),
https://doi.org/10.1021/nl802277k
[24] R. Adomavicius, G. Molis, A. Krotkus, and V. Sirutkaitis,
Spectral dependencies of terahertz emission from InAs and InSb,
Appl. Phys. Lett.
87, 261101 (2005),
https://doi.org/10.1063/1.2143111
[25] V.L. Malevich, R. Adomavicius, and A. Krotkus, THz emission
from semiconductor surfaces, Compt. Rendus Phys.
9,
130–141 (2008),
https://doi.org/10.1016/j.crhy.2007.09.014
[26] A. Krotkus, R. Viselga, K. Bertulis, V. Jasutis, S.
Marcinkevicius, and U. Olin, Subpicosecond carrier lifetimes in
GaAs grown by molecular-beam epitaxy at low
substrate-temperature, Appl. Phys. Lett.
66, 1939–1941
(1995),
https://doi.org/10.1063/1.113283
[27] A. Krotkus, K. Bertulis, L. Dapkus, U. Olin, and S.
Marcinkevicius, Ultrafast carrier trapping in Be-doped
low-temperature-grown GaAs, Appl. Phys. Lett.
75,
3336–3338 (1999),
https://doi.org/10.1063/1.125343
[28] A. Krotkus and J.L. Coutaz, Non-stoichiometric
semiconductor materials for terahertz optoelectronics
applications, Sem. Sci. Technol.
20, S142–S150 (2005),
https://doi.org/10.1088/0268-1242/20/7/004
[29] A. Krotkus, K. Bertulis, M. Kaminska, K. Korona, A. Wolos,
J. Siegert, S. Marcinkevicius, J.F. Roux, and J.L. Coutaz,
Be-doped low-temperature-grown GaAs material for optoelectronic
switches, IEE Proc. Optoelectron.
149, 111–115 (2002),
https://doi.org/10.1049/ip-opt:20020435
[30] K.P. Korona, A. Wysmolek, M. Kami-ska, A. Twardowski, M.
Piersa, M. Palczewska, G. Strzelecka, A. Hruban, J. Kuhl, R.
Adomavicius, and A. Krotkus, Manganese as a fast charge carrier
trapping center in InP, Physica B
382, 220–228 (2006),
https://doi.org/10.1016/j.physb.2006.02.035
[31] S. Gupta, M.Y. Frankel, J.A. Valdmanis, J.F. Whitaker, G.A.
Mourou, F.W. Smith, and A.R. Calawa, Subpicosecond carrier
lifetime in GaAs grown by molecular beam epitaxy at low
temperatures, Appl. Phys. Lett.
59, 3276–3278 (1991),
https://doi.org/10.1063/1.105729
[32] E.S. Harmon, M.R. Melloch, J.M. Woodall, D.D. Nolte, N.
Otsuka, and C.L. Chang, Carrier lifetime versus anneal in low
temperature growth GaAs, Appl. Phys. Lett.
63, 2248–2250
(1993),
https://doi.org/10.1063/1.110542
[33] J.F. Whitaker, Optoelectronic applications of LTMBE III–V
materials, Mater. Sci. Eng. B
22, 61–67 (1993),
https://doi.org/10.1016/0921-5107(93)90224-B
[34] D.D. Nolte, Semi-insulating semiconductor heterostructures:
Optoelectronic properties and applications, J. Appl. Phys.
85,
6259–6289 (1999),
https://doi.org/10.1063/1.370284
[35] A. Krotkus, K. Bertulis, R. Adomavicius, V. Pacebutas, and
A. Geizutis, Semiconductor materials for ultrafast
optoelectronic applications, Lith. J. Phys.
49, 359–372
(2009),
https://doi.org/10.3952/lithjphys.49407
[36] K.P. Korona, J. Muszalski, M. Kaminska, and E.R. Weber,
Deep defects in low-temperature GaAs, Acta Phys. Pol. A
82,
821–824 (1992),
https://doi.org/10.12693/APhysPolA.82.821
[37] S. Marcinkevicius, A. Krotkus, R. Viselga, U. Olin, and C.
Jagadish, Non-thermal photoexcited electron distributions in
non-stoichiometric GaAs, Semicond. Sci. Technol.
12,
396–400 (1997),
https://doi.org/10.1088/0268-1242/12/4/009
[38] F.W. Smith, H.Q. Le, V. Diaduk, M.A. Hollis, A.R. Calawa,
S. Gupta, M. Frankel, D.R. Dykaar, G.A. Mourou, and T.Y. Hsiang,
Picosecond GaAs based photoconductive optoelectronic detectors,
Appl. Phys. Lett.
54, 890–892 (1989),
https://doi.org/10.1063/1.100800
[39] J.F. Roux, J.L. Coutaz, and A. Krotkus, Time-resolved
reflectivity characterization of polycrystalline
low-temperature-grown GaAs, Appl. Phys. Lett.
74,
2462–2464 (1999),
https://doi.org/10.1063/1.123881
[40] U. Siegner, R. Fluck, G. Zhang, and U. Keller, Ultrafast
high-intensity nonlinear absorption dynamics in low-temperature
grown gallium arsenide, Appl. Phys. Lett.
69, 2566–2568
(1996),
https://doi.org/10.1063/1.117701
[41] S.S. Prabhu, S.E. Ralph, M.R. Melloch, and E.S. Harmon,
Carrier dynamics of low-temperature-grown GaAs observed via THz
spectroscopy, Appl. Phys. Lett.
70, 2419–2421
(1997),
https://doi.org/10.1063/1.118890
[42] H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and
I. Wilke, Carrier dynamics in low-temperature grown GaAs studied
by terahertz emission spectroscopy, J. Appl. Phys.
90,
1303–1306 (2001),
https://doi.org/10.1063/1.1380414
[43] M. Kaminska and E.R. Weber,
The Physics of
Semiconductors, eds. E.M. Anastasskis and J.D.
Joannopoulos (World Scientific, Singapore, 1990) p. 473,
https://doi.org/10.1142/1149
[44] A.J. Lochtefeld, M.R. Melloch, J.C.P. Chang, and E.S.
Harmon, The role of point defects and arsenic precipitates in
carrier trapping and recombination in low-temperature grown
GaAs, J. Appl. Phys.
64, 1465–1467 (1996),
https://doi.org/10.1063/1.116909
[45] M. Haiml, U. Siegner, F. Morier-Genoud, U. Keller, M.
Luysberg, P. Specht, and E.R. Weber, Femtosecond response times
and high optical nonlinearity in beryllium-doped low-temperature
grown GaAs, Appl. Phys. Lett.
74, 1269–1271 (1999),
https://doi.org/10.1063/1.123521
[46] A. Claverie, F. Namavar, and Z. Liliental-Weber, Formation
of As precipitates in GaAs by ion implantation and thermal
annealing, Appl. Phys. Lett.
62, 1271–1273 (1993),
https://doi.org/10.1063/1.108704
[47] C. Jagadish, H.H. Tan, J. Jasinski, M. Kaminska, M.
Palczewska, A. Krotkus, and S. Marcinkevicius, High resistivity
and picosecond carrier lifetime of GaAs implanted with MeV Ga
ions at high fluences, Appl. Phys. Lett.
67, 1724–1726
(1995),
https://doi.org/10.1063/1.115029
[48] J. Jasinski, A. Kurpiewski, K. Korona, M. Kaminska, M.
Palczewska, A. Krotkus, S. Marcinkievicius, Z. Liliental-Weber,
H.H. Tan, and C. Jagadish, Role of arsenic antisite defects in
nonstoichiometric gallium arsenide, Acta Phys. Pol. A
88,
747–750 (1995),
https://doi.org/10.12693/APhysPolA.88.747
[49] C. Jagadish, H.H. Tan, A. Krotkus, S. Marcinkevicius, K.P.
Korona, and M. Kaminska, Ultrafast carrier trapping in high
energy ion implanted gallium arsenide, Appl. Phys. Lett.
68,
2225–2227 (1996),
https://doi.org/10.1063/1.115866
[50] H.H. Tan, C. Jagadish, K.P. Korona, J. Jasinski, M.
Kaminska, R. Viselga, S. Marcinkevicius, and A. Krotkus,
Ion-implanted GaAs for subpicosecond optoelectronic devices,
IEEE J. Sel. Top. Quantum Electron.
2, 636–642 (1996),
https://doi.org/10.1109/2944.571762
[51] K.P. Korona, J. Jasinski, A. Kurpiewski, M. Kaminska, C.
Jagadish, H.H. Tan, A. Krotkus, and S. Marcinkevicius, Ultrafast
carrier trapping and high resistivity of MeV energy ion
implanted GaAs, Acta Phys. Pol. A
90, 851–854 (1996),
https://doi.org/10.12693/APhysPolA.90.851
[52] A. Krotkus, S. Marcinkevicius, C. Jagadish, and M.
Kaminska, Femtosecond electron relaxation in non-stoichiometric
GaAs and InGaAs, J. Lumin.
66–67, 455–461 (1995),
https://doi.org/10.1016/0022-2313(95)00190-5
[53] S. Marcinkevičius, C. Jagadish, H.H. Tan, M. Kaminska, K.
Korona, R. Adomavičius, and A. Krotkus, Influence of annealing
on carrier dynamics in As ion-implanted epitaxially lifted-on
GaAs layers, Appl. Phys. Lett.
76, 1306–1308 (2000),
https://doi.org/10.1063/1.126017
[54] S. Grankowska Ciechanowicz, K.P. Korona, A. Wolos, A.
Drabinska, A. Iwan, I. Tazbir, J. Wojtkiewicz, and M. Kaminska,
Toward better efficiency of air-stable polyazomethine-based
organic solar cells using time-resolved photoluminescence and
light-induced electron spin resonance as verification methods,
J. Phys. Chem. C
120, 11415–11425 (2016),
https://doi.org/10.1021/acs.jpcc.6b03344
[55] J. Wojtkiewicz, A. Iwan, M. Pilch, B. Boharewicz, K.
Wojcik, I. Tazbir, and M. Kaminska, Towards designing polymers
for photovoltaic applications: A DFT and experimental study of
polyazomethines with various chemical structures, Spectrochim.
Acta A
181, 208–217 (2017),
https://doi.org/10.1016/j.saa.2017.03.046