[PDF]    https://doi.org/10.3952/physics.v58i1.3651

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 49–61 (2018)


RADIATIVE RECOMBINATION AND OTHER PROCESSES RELATED TO EXCESS CHARGE CARRIERS, DECISIVE FOR EFFICIENT PERFORMANCE OF ELECTRONIC DEVICES
Adam Wincukiewicz, Wojciech Mech, Sylwia Grankowska, Agnieszka Wolos, Aneta Drabinska, Tomasz Slupinski, Krzysztof Piotr Korona, and Maria Kaminska
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
E-mail: maria.kaminska@fuw.edu.pl

Received 19 February 2018; accepted 22 March 2018

We present selected semiconductor (inorganic and organic) structures for which non-radiative recombination of excess charge carriers is very high, luminescence suppressed and its lifetime substantially shortened. Processes competitive with radiative energy emission are discussed. The importance of Shockley–Read–Hall recombination in materials with high impurity or defect concentration, applied in ultrafast devices, is shown. Also, charge transfer process in solar cells is discussed in the context of luminescence quenching of individual components of an active layer.
A part of the shown research was a subject of our common work with Prof. Arūnas Krotkus during the period from 1994 till 2006.
Keywords: radiative and non-radiative recombination, charge transfer, time-resolved luminescence
PACS: 78.47, 78.66.Fd, 78

RADIACINĖ REKOMBINACIJA IR KITI SUSIJĘ SU PERTEKLINIAIS KRŪVININKAIS VYKSMAI, LEMIANTYS ELEKTRONINIŲ PRIETAISŲ EFEKTYVUMĄ
Adam Wincukiewicz, Wojciech Mech, Sylwia Grankowska, Agnieszka Wołoś, Aneta Drabińska, Tomasz Słupiński, Krzysztof Piotr Korona, Maria Kamińska

Varšuvos universiteto Fizikos fakultetas, Varšuva, Lenkija


References / Nuorodos

[1] D. Curie, Luminescence in Crystals (Wiley, New York, 1963),
https://www.amazon.co.uk/Luminescence-crystals-Daniel-Curie/dp/B0000CLN77/
[2] Y.P. Varshni, G.E.J. Garlick, and A.E. Yunovich, Radiative Recombination in Semiconductors (Nauka, Moscow, 1972) [in Russian]
[3] V.L. Bonch-Bruevich and S.G. Kalashnikov, The Physics of Semiconductors (Nauka, Moscow, 1990) [in Russian],
https://www.amazon.com/Physics-Semiconductors-Russian-Kalashnikov-Bonch-Bruevich/dp/5020140325
[4] H. Spanggaard and F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Sol. Energy Mater. Sol. Cells 83, 125–146 (2004),
https://doi.org/10.1016/j.solmat.2004.02.021
[5] C. Deibel and V. Dyakonov, Polymer–fullerene bulk heterojunction solar cells, Rep. Prog. Phys. 73, 96401 (2010),
https://doi.org/10.1088/0034-4885/73/9/096401
[6] J. Behrends, A. Sperlich, A. Schnegg, T. Biskup, C. Teutloff, K. Lips, V Dyakonov, and R. Bittl, Direct detection of photoinduced charge transfer complexes in polymer fullerene blends, Phys. Rev. B 85, 125206 (2012),
https://doi.org/10.1103/PhysRevB.85.125206
[7] Research Cell Efficiency Records, the latest chart (NREL),
https://www.nrel.gov/pv/national-center-for-photovoltaics.html
[8] K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G.E. Eperon, J.T.-W. Wang, T. Stergiopoulos, S.D. Stranks, H. Snaith, and R.J. Nicholas, Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors, Energy Environ. Sci. 9, 962–970 (2016),
https://doi.org/10.1039/C5EE03435C
[9] B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984),
https://doi.org/10.1007/978-3-662-02403-4
[10] M. Kaminska and E.R. Weber, Low temperature GaAs: electrical and optical properties, Mater. Sci. Forum 83–87, 1033–1044 (1992),
https://doi.org/10.4028/www.scientific.net/MSF.83-87.1033
[11] H. Rohdin, M.W. Muller, and C.M. Wolfe, A model of Cr in GaAs, J. Phys. Chem. Solids 44, 1049–1057 (1983),
https://doi.org/10.1016/0022-3697(83)90087-2
[12] G.M. Martin, A. Mitonneau, and A. Mircea, Electron traps in bulk and epitaxial GaAs crystals, Electron. Lett. 13, 191–193 (1997),
https://doi.org/10.1049/el:19770140
[13] E.R. Weber, H. Ennen, U. Kaufmann, J. Windscheif, J. Schneider, and T. Wosinski, Identification of AsGa antisites in plastically deformed GaAs, J. Appl. Phys. 53, 6140–6143 (1982),
https://doi.org/10.1063/1.331577
[14] M. Kaminska, M. Skowronski, J. Lagowski, J.M. Parsey, and H.C. Gatos, Intracenter transitions in the dominant deep level (EL2) in GaAs, Appl. Phys. Lett. 43, 302–304 (1983),
https://doi.org/10.1063/1.94293
[15] M. Kaminska, M. Skowronski, and W. Kuszko, Identification of the 0.82-eV electron trap, EL2 in GaAs, as an isolated antisite arsenic defect, Phys. Rev. Lett. 55, 2204–2207 (1985),
https://doi.org/10.1103/PhysRevLett.55.2204
[16] F.W. Smith, A.R. Calawa, C.-L. Chen, M.J. Manfra, and L.J. Mahoney, New MBE buffer used to eliminate backgating in GaAs MESFETs, IEEE Electron Device Lett. 9, 77–80 (1988),
https://doi.org/10.1109/55.2046
[17] M. Kaminska, Z. Liliental-Weber, E.R. Weber, T. George, J.B. Kortright, F.W. Smith, B.-Y. Tsaur, and A.R. Calawa, Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures, Appl. Phys. Lett. 54, 1881–1883 (1989),
https://doi.org/10.1063/1.101229
[18] A.C. Warren, J.M. Woodall, J.L. Freeouf, D. Grischkowsky, D.T. McInturff, M.R. Melloch, and N. Otsuka, Arsenic precipitates and the semiinsulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy, Appl. Phys. Lett. 57, 1331–1333 (1990),
https://doi.org/10.1063/1.103474
[19] K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pacebutas, R. Adomavicius, G. Molis, and S. Marcinkevicius, GaBiAs: A material for optoelectronic terahertz devices, Appl. Phys. Lett. 88, 201112 (2006),
https://doi.org/10.1063/1.2205180
[20] R. Adomavicius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, Terahertz emission from p-InAs due to the instantaneous polarization, Appl. Phys. Lett. 85, 2463–2465 (2004),
https://doi.org/10.1063/1.1795980
[21] A. Krotkus, S. Marcinkevicius, J. Jasinski, M. Kaminska, H.H. Tan, and C. Jagadish, Picosecond carrier lifetime in GaAs implanted with high-doses of As ions – an alternative material to low-temperature GaAs for optoelectronic applications, Appl. Phys. Lett. 66, 3304–3306 (1995),
https://doi.org/10.1063/1.113738
[22] A. Krotkus, Semiconductors for terahertz photonics applications, J. Phys. D 27, 273001 (2010),
https://doi.org/10.1088/0022-3727/43/27/273001
[23] J.F. Scott, H.J. Fan, S. Kawasaki, J. Banys, M. Ivanov, A. Krotkus, J. Macutkevic, R. Blinc, V.V. Laguta, P. Cevc, J.S. Liu, and A.L. Kholkin, Terahertz emission from tubular Pb(Zr, Ti)O3 nanostructures, Nano Lett. 8, 4404–4409 (2008),
https://doi.org/10.1021/nl802277k
[24] R. Adomavicius, G. Molis, A. Krotkus, and V. Sirutkaitis, Spectral dependencies of terahertz emission from InAs and InSb, Appl. Phys. Lett. 87, 261101 (2005),
https://doi.org/10.1063/1.2143111
[25] V.L. Malevich, R. Adomavicius, and A. Krotkus, THz emission from semiconductor surfaces, Compt. Rendus Phys. 9, 130–141 (2008),
https://doi.org/10.1016/j.crhy.2007.09.014
[26] A. Krotkus, R. Viselga, K. Bertulis, V. Jasutis, S. Marcinkevicius, and U. Olin, Subpicosecond carrier lifetimes in GaAs grown by molecular-beam epitaxy at low substrate-temperature, Appl. Phys. Lett. 66, 1939–1941 (1995),
https://doi.org/10.1063/1.113283
[27] A. Krotkus, K. Bertulis, L. Dapkus, U. Olin, and S. Marcinkevicius, Ultrafast carrier trapping in Be-doped low-temperature-grown GaAs, Appl. Phys. Lett. 75, 3336–3338 (1999),
https://doi.org/10.1063/1.125343
[28] A. Krotkus and J.L. Coutaz, Non-stoichiometric semiconductor materials for terahertz optoelectronics applications, Sem. Sci. Technol. 20, S142–S150 (2005),
https://doi.org/10.1088/0268-1242/20/7/004
[29] A. Krotkus, K. Bertulis, M. Kaminska, K. Korona, A. Wolos, J. Siegert, S. Marcinkevicius, J.F. Roux, and J.L. Coutaz, Be-doped low-temperature-grown GaAs material for optoelectronic switches, IEE Proc. Optoelectron. 149, 111–115 (2002),
https://doi.org/10.1049/ip-opt:20020435
[30] K.P. Korona, A. Wysmolek, M. Kami-ska, A. Twardowski, M. Piersa, M. Palczewska, G. Strzelecka, A. Hruban, J. Kuhl, R. Adomavicius, and A. Krotkus, Manganese as a fast charge carrier trapping center in InP, Physica B 382, 220–228 (2006),
https://doi.org/10.1016/j.physb.2006.02.035
[31] S. Gupta, M.Y. Frankel, J.A. Valdmanis, J.F. Whitaker, G.A. Mourou, F.W. Smith, and A.R. Calawa, Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures, Appl. Phys. Lett. 59, 3276–3278 (1991),
https://doi.org/10.1063/1.105729
[32] E.S. Harmon, M.R. Melloch, J.M. Woodall, D.D. Nolte, N. Otsuka, and C.L. Chang, Carrier lifetime versus anneal in low temperature growth GaAs, Appl. Phys. Lett. 63, 2248–2250 (1993),
https://doi.org/10.1063/1.110542
[33] J.F. Whitaker, Optoelectronic applications of LTMBE III–V materials, Mater. Sci. Eng. B 22, 61–67 (1993),
https://doi.org/10.1016/0921-5107(93)90224-B
[34] D.D. Nolte, Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications, J. Appl. Phys. 85, 6259–6289 (1999),
https://doi.org/10.1063/1.370284
[35] A. Krotkus, K. Bertulis, R. Adomavicius, V. Pacebutas, and A. Geizutis, Semiconductor materials for ultrafast optoelectronic applications, Lith. J. Phys. 49, 359–372 (2009),
https://doi.org/10.3952/lithjphys.49407
[36] K.P. Korona, J. Muszalski, M. Kaminska, and E.R. Weber, Deep defects in low-temperature GaAs, Acta Phys. Pol. A 82, 821–824 (1992),
https://doi.org/10.12693/APhysPolA.82.821
[37] S. Marcinkevicius, A. Krotkus, R. Viselga, U. Olin, and C. Jagadish, Non-thermal photoexcited electron distributions in non-stoichiometric GaAs, Semicond. Sci. Technol. 12, 396–400 (1997),
https://doi.org/10.1088/0268-1242/12/4/009
[38] F.W. Smith, H.Q. Le, V. Diaduk, M.A. Hollis, A.R. Calawa, S. Gupta, M. Frankel, D.R. Dykaar, G.A. Mourou, and T.Y. Hsiang, Picosecond GaAs based photoconductive optoelectronic detectors, Appl. Phys. Lett. 54, 890–892 (1989),
https://doi.org/10.1063/1.100800
[39] J.F. Roux, J.L. Coutaz, and A. Krotkus, Time-resolved reflectivity characterization of polycrystalline low-temperature-grown GaAs, Appl. Phys. Lett. 74, 2462–2464 (1999),
https://doi.org/10.1063/1.123881
[40] U. Siegner, R. Fluck, G. Zhang, and U. Keller, Ultrafast high-intensity nonlinear absorption dynamics in low-temperature grown gallium arsenide, Appl. Phys. Lett. 69, 2566–2568 (1996),
https://doi.org/10.1063/1.117701
[41] S.S. Prabhu, S.E. Ralph, M.R. Melloch, and E.S. Harmon, Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy, Appl. Phys. Lett. 70, 2419–2421 (1997),
https://doi.org/10.1063/1.118890
[42] H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy, J. Appl. Phys. 90, 1303–1306 (2001),
https://doi.org/10.1063/1.1380414
[43] M. Kaminska and E.R. Weber, The Physics of Semiconductors, eds. E.M. Anastasskis and J.D. Joannopoulos (World Scientific, Singapore, 1990) p. 473,
https://doi.org/10.1142/1149
[44] A.J. Lochtefeld, M.R. Melloch, J.C.P. Chang, and E.S. Harmon, The role of point defects and arsenic precipitates in carrier trapping and recombination in low-temperature grown GaAs, J. Appl. Phys. 64, 1465–1467 (1996),
https://doi.org/10.1063/1.116909
[45] M. Haiml, U. Siegner, F. Morier-Genoud, U. Keller, M. Luysberg, P. Specht, and E.R. Weber, Femtosecond response times and high optical nonlinearity in beryllium-doped low-temperature grown GaAs, Appl. Phys. Lett. 74, 1269–1271 (1999),
https://doi.org/10.1063/1.123521
[46] A. Claverie, F. Namavar, and Z. Liliental-Weber, Formation of As precipitates in GaAs by ion implantation and thermal annealing, Appl. Phys. Lett. 62, 1271–1273 (1993),
https://doi.org/10.1063/1.108704
[47] C. Jagadish, H.H. Tan, J. Jasinski, M. Kaminska, M. Palczewska, A. Krotkus, and S. Marcinkevicius, High resistivity and picosecond carrier lifetime of GaAs implanted with MeV Ga ions at high fluences, Appl. Phys. Lett. 67, 1724–1726 (1995),
https://doi.org/10.1063/1.115029
[48] J. Jasinski, A. Kurpiewski, K. Korona, M. Kaminska, M. Palczewska, A. Krotkus, S. Marcinkievicius, Z. Liliental-Weber, H.H. Tan, and C. Jagadish, Role of arsenic antisite defects in nonstoichiometric gallium arsenide, Acta Phys. Pol. A 88, 747–750 (1995),
https://doi.org/10.12693/APhysPolA.88.747
[49] C. Jagadish, H.H. Tan, A. Krotkus, S. Marcinkevicius, K.P. Korona, and M. Kaminska, Ultrafast carrier trapping in high energy ion implanted gallium arsenide, Appl. Phys. Lett. 68, 2225–2227 (1996),
https://doi.org/10.1063/1.115866
[50] H.H. Tan, C. Jagadish, K.P. Korona, J. Jasinski, M. Kaminska, R. Viselga, S. Marcinkevicius, and A. Krotkus, Ion-implanted GaAs for subpicosecond optoelectronic devices, IEEE J. Sel. Top. Quantum Electron. 2, 636–642 (1996),
https://doi.org/10.1109/2944.571762
[51] K.P. Korona, J. Jasinski, A. Kurpiewski, M. Kaminska, C. Jagadish, H.H. Tan, A. Krotkus, and S. Marcinkevicius, Ultrafast carrier trapping and high resistivity of MeV energy ion implanted GaAs, Acta Phys. Pol. A 90, 851–854 (1996),
https://doi.org/10.12693/APhysPolA.90.851
[52] A. Krotkus, S. Marcinkevicius, C. Jagadish, and M. Kaminska, Femtosecond electron relaxation in non-stoichiometric GaAs and InGaAs, J. Lumin. 66–67, 455–461 (1995),
https://doi.org/10.1016/0022-2313(95)00190-5
[53] S. Marcinkevičius, C. Jagadish, H.H. Tan, M. Kaminska, K. Korona, R. Adomavičius, and A. Krotkus, Influence of annealing on carrier dynamics in As ion-implanted epitaxially lifted-on GaAs layers, Appl. Phys. Lett. 76, 1306–1308 (2000),
https://doi.org/10.1063/1.126017
[54] S. Grankowska Ciechanowicz, K.P. Korona, A. Wolos, A. Drabinska, A. Iwan, I. Tazbir, J. Wojtkiewicz, and M. Kaminska, Toward better efficiency of air-stable polyazomethine-based organic solar cells using time-resolved photoluminescence and light-induced electron spin resonance as verification methods, J. Phys. Chem. C 120, 11415–11425 (2016),
https://doi.org/10.1021/acs.jpcc.6b03344
[55] J. Wojtkiewicz, A. Iwan, M. Pilch, B. Boharewicz, K. Wojcik, I. Tazbir, and M. Kaminska, Towards designing polymers for photovoltaic applications: A DFT and experimental study of polyazomethines with various chemical structures, Spectrochim. Acta A 181, 208–217 (2017),
https://doi.org/10.1016/j.saa.2017.03.046