[PDF]    https://doi.org/10.3952/physics.v58i1.3652

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 62–75 (2018)


SPATIAL AND TEMPORAL COHERENCE IN OPTICAL PARAMETRIC DEVICES PUMPED WITH MULTIMODE BEAMS
Valdas Pašiškevičiusa, Valerijus Smilgevičiusb, Rytis Butkusb, Riaan Coetzeea, and Fredrik Laurella
aDepartment of Applied Physics, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm, Sweden
bLaser Research Center, Vilnius University, Saulėtekio 10, 10223 Vilnius, Lithuania
E-mail: vp@kth.se

Received 16 January 2018; accepted 22 March 2018

We investigate the emergence of spatial and temporal coherence for the fields in the noncritical nondegenerate parametric second-order down-conversion process pumped with low spatial and temporal coherence beams. It is shown that in this scenario, which is of considerable practical importance, the parametric gain in the near field breaks down into an ensemble of mutually incoherent beamlets containing parametric waves. The field generated in a single beamlet is fully spatially coherent. The size of such coherent parametric gain regions is governed by the near-field spatial coherence radius of the pump, which also acts as a parameter, restraining the linear diffraction of the parametric waves generated in the nonlinear interaction. Furthermore, we experimentally demonstrate how the spatial and temporal coherence can be substantially enhanced by manipulating the spatial field correlation of the multi-longitudinal and multi-transversal mode pump.
Keywords: optical parametric generators and oscilliators, nonlinear optical ferroelectric structures, temporal and spatial photon correlations, spatial and temporal coherence
PACS: 42.65.Lm, 42.65.Yj, 42.70.Mp

DAUGIAMODŽIAIS LAZERIAIS KAUPINAMŲ OPTINIŲ PARAMETRINIŲ DAŽNIO KEITIKLIŲ SPINDULIUOTĖS ERDVINIS IR LAIKINIS KOHERENTIŠKUMAS
Valdas Pašiškevičiusa, Valerijus Smilgevičiusb, Rytis Butkusb, Riaan Coetzeea, Fredrik Laurella

aKarališkasis technologijos institutas, Stokholmas, Švedija
bLazerinių tyrimų centras, Vilnius, Lietuva

Darbe tiriamas erdvinio ir laikinio koherentiškumo atsiradimas ir vystymasis neišsigimusio antros eilės parametrinio šviesos generavimo procesuose, realizuotuose feroelektriniuose dariniuose, kurie kaupinami daugiamodžių lazerių spinduliuote. Darbe parodoma, kad šiomis sąlygomis, kurios yra aktualios praktiniams taikymams, parametrinės spinduliuotės erdvinis skirstinys kristale užgimsta kaip tarpusavyje nekoreliuotų parametrinės spinduliuotės gijų ansamblis, kur pavienė tos spinduliuotės gija turi visišką erdvinį koherentiškumą. Mažas kaupinimo erdvinio koherentiškumo spindulys, būdingas didelės energijos daugiamodžių lazerių spinduliuotei, lemia parametrinio stiprinimo gijų skersinius matmenis ir padeda apriboti tiesinės difrakcijos sukeliamą parametrinės spinduliuotės gijų išplitimą. Remdamiesi šiais pastebėjimais mes eksperimentiškai pademonstravome, kad manipuliuojant daugiamodžio kaupinimo lauko erdvinėmis koreliacijomis netiesiniame kristale įmanoma padidinti generuojamos parametrinės spinduliuotės erdvinį ir laikinį koherentiškumą.


References / Nuorodos

[1] J.E. Bjorkholm, Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators, IEEE J. Quantum Electron. 7, 109–118 (1971),
https://doi.org/10.1109/JQE.1971.1076610
[2] M. Eichhorn, G. Stöppler, M. Schellhorn, K.T. Zawilski, and P.G. Schunemann, Gaussian- versus flat-top-pumping of a mid-IR ZGP RISTRA OPO, Appl. Phys. B 108, 109–115 (2012),
https://doi.org/10.1007/s00340-012-4979-8
[3] M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA, Appl. Phys. B 73, 663–670 (2001),
https://doi.org/10.1007/s003400100733
[4] A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, 5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion, Opt. Mater. Express 1, 201 (2011),
https://doi.org/10.1364/OME.1.000201
[5] H. Ishizuki and T. Taira, High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm × 5 mm aperture, Opt. Lett. 30, 2918–2920 (2005),
https://doi.org/10.1364/OL.30.002918
[6] H. Ishizuki and T. Taira, High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystal, Opt. Express 18, 253–258 (2010),
https://doi.org/10.1364/OE.18.000253
[7] L.R. Marshall, A. Kaz, and O. Aytur, Multimode pumping of optical parametric oscillators, IEEE J. Quantum Electron. 32, 177–182 (1996),
https://doi.org/10.1109/3.481864
[8] R. Graham and H. Haken, The quantum-fluctuations of the optical parametric oscillator. I, Z. Phys. 210, 276–302 (1968),
https://doi.org/10.1007/BF01379946
[9] S.T. Wong, T. Plettner, K.L. Vodopyanov, K. Urbanek, M. Digonnet, and R.L. Byer, Self-phase-locked degenerate femtosecond optical parametric oscillator, Opt. Lett. 33, 1896–1898 (2008),
https://doi.org/10.1364/OL.33.001896
[10] S.C. Lyons, G.L. Oppo, W.J. Firth, and J.R.M. Barr, Beam-quality studies of nanosecond singly resonant optical parametric oscillators, IEEE J. Quantum Electron. 36, 541–549 (2000),
https://doi.org/10.1109/3.842095
[11] J.P. Gordon, L.R. Walker, and W.H. Louisell, Quantum statistics of masers and attenuators, Phys. Rev. 130, 806–812 (1963),
https://doi.org/10.1103/PhysRev.130.806
[12] R. Graham, Photon statistics of the optical parametric oscillator including the threshold region, Z. Phys. 211, 469–482 (1968),
https://doi.org/10.1007/BF01404560
[13] B.R. Mollow and R.J. Glauber, Quantum theory of parametric amplification. II, Phys. Rev. 160, 1097–1108 (1967),
https://doi.org/10.1103/PhysRev.160.1097
[14] L.A. Wu, H.J. Kimble, J.L. Hall, and H. Wu, Generation of squeezed states by parametric down conversion, Phys. Rev. Lett. 57, 2520–2523 (1986),
https://doi.org/10.1103/PhysRevLett.57.2520
[15] R. Graham, Theory of cross-correlation of signal and idler in parametric oscillators, Phys. Lett. A 32, 373–374 (1970),
https://doi.org/10.1016/0375-9601(70)90005-8
[16] P.D. Drummond and P. Kinsler, Triple correlations in non-degenerate parametric oscillators, Quantum Semiclass. Opt. 7, 727–741 (1995),
https://doi.org/10.1088/1355-5111/7/4/025
[17] A. Picozzi and M. Haelterman, Parametric three-wave soliton generated from incoherent light, Phys. Rev. Lett. 86, 2010–2013 (2001),
https://doi.org/10.1103/PhysRevLett.86.2010
[18] G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A. Picozzi, and C. Montes, Temporal coherence in mirrorless optical parametric oscillators, J. Opt. Soc. Am. B 29, 1194 (2012),
https://doi.org/10.1364/JOSAB.29.001194
[19] G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, Coherent phase-modulation transfer in counterpropagating parametric down-conversion, Phys. Rev. A 84, 23825 (2011),
https://doi.org/10.1103/PhysRevA.84.023825
[20] C. Canalias and V. Pasiskevicius, Mirrorless optical parametric oscillator, Nat. Photonics 1, 459–462 (2007),
https://doi.org/10.1038/nphoton.2007.137
[21] A. Piskarskas, V. Smilgevièius, and A. Stabinis, Optical parametric oscillation excited by an incoherent conical beam, Opt. Commun. 143, 72–74 (1997),
https://doi.org/10.1016/S0030-4018(97)00273-3
[22] V. Pasiskevicius, H. Karlsson, J.A. Tellefsen, F. Laurell, R. Butkus, A. Piskarskas, V. Smilgevicius, and A. Stabinis, Singly resonant optical parametric oscillator in periodically poled KTiOPO4 pumped by a Bessel beam, Opt. Lett. 25, 969–971 (2000),
https://doi.org/10.1364/OL.25.000969
[23] H. Karlsson and F. Laurell, Electric field poling of flux grown KTiOPO4, Appl. Phys. Lett. 71, 3474–3476 (1997),
https://doi.org/10.1063/1.120363
[24] A.E. Siegman, Lasers (University Science Books, 1986),
http://www.worldcat.org/title/lasers/oclc/14525287/viewport
[25] C. Manzoni and G. Cerullo, Design criteria for ultrafast optical parametric amplifiers, J. Opt. 18, 103501 (2016),
https://doi.org/10.1088/2040-8978/18/10/103501
[26] W.J.A. Russel, J. Gehr, R.L. Schmitt, and A.V. Smith, Beam tilt and angular dispersion in broad-bandwidth, nanosecond optical parametric oscillators, J. Opt. Soc. Am. B 16, 1525–1532 (1999),
https://doi.org/10.1364/JOSAB.16.001525
[27] G. Arisholm, Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators, J. Opt. Soc. Am. B 16, 117–127 (1999),
https://doi.org/10.1364/JOSAB.16.000117
[28] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995),
https://doi.org/10.1017/CBO9781139644105
[29] M. Kolobov, The spatial behavior of nonclassical light, Rev. Mod. Phys. 71, 1539–1589 (1999),
https://doi.org/10.1103/RevModPhys.71.1539
[30] A. Picozzi, C. Montes, and M. Haelterman, Coherence properties of the parametric three-wave interaction driven from an incoherent pump, Phys. Rev. E 66, 56605 (2002),
https://doi.org/10.1103/PhysRevE.66.056605
[31] V. Pasiskevicius, H. Karlsson, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, Highe-fficiency parametric oscillation and spectral control in the red spectral region with periodically poled KTiOPO4, Opt. Lett. 26, 710–712 (2001),
https://doi.org/10.1364/OL.26.000710
[32] M. Sheik-Bahae and M. Ebrahimzadeh, Measurements of nonlinear refraction in the second-order χ(2) materials KTiOPO4, KNbO3, β-BaB2O4, and LiB3O5, Opt. Commun. 142, 294–298 (1997),
https://doi.org/10.1016/S0030-4018(97)00303-9
[33] V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, Generalized Bessel–Gauss beams, J. Mod. Opt. 43, 1155–1166 (1996),
https://doi.org/10.1080/09500349608232794