[PDF]    https://doi.org/10.3952/physics.v58i1.3653

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 76–89 (2018)


MULTIMODE SCANNING NEAR-FIELD PHOTOLUMINESCENCE SPECTROSCOPY AND ITS APPLICATION FOR STUDIES OF InGaN EPITAXIAL LAYERS AND QUANTUM WELLS
Saulius Marcinkevičius, Tomas Kristijonas Uždavinys, Ruslan Ivanov, and Mounir Mensi
KTH Royal Institute of Technology, Department of Applied Physics, Electrum 229, 16440 Kista, Sweden
E-mail: sm@kth.se

Received 1 February 2018; accepted 22 March 2018

The paper reviews our recent achievements in developing a multimode scanning near-field optical microscopy (SNOM) technique. The multimode SNOM apparatus allows us to simultaneously measure spatial variations of photoluminescence spectra in the illumination and illumination-collection modes, their transients and sample surface morphology. The potential of this technique has been demonstrated on a polar InGaN epitaxial layer and nonpolar InGaN/GaN quantum wells. SNOM measurements have allowed revealing a number of phenomena, such as the band potential fluctuations and their correlation to the surface morphology, spatial nonuniformity of the radiative and nonradiative lifetimes, as well as the extended band nature of localized states. The combination of different modes enabled measurements of the ambipolar carrier diffusion and its anisotropy.
Keywords: near-field, SNOM, photoluminescence, InGaN, diffusion, recombination
PACS: 07.79.Fc, 78.55.Cr, 78.47.jd

DAUGIAKANALĖ SKENUOJANTI ARTIMO LAUKO FOTOLIUMINESCENCIJOS SPEKTROSKOPIJA IR JOS TAIKYMAS InGaN EPITAKSINIŲ SLUOKSNIŲ IR KVANTINIŲ DUOBIŲ TYRIMUI
Saulius Marcinkevičius, Tomas Kristijonas Uždavinys, Ruslan Ivanov, Mounir Mensi

KTH Karališkasis technologijos institutas, Kista, Švedija

Aptariami pastarųjų metų pasiekimai plėtojant daugiakanalę skenuojančios artimo lauko optinės mikroskopijos (SAOM) metodiką. Naudojant šį eksperimentinį metodą tuo pat metu galima skenuoti dvimatį fotoliuminescencijos spektrų ir jų dinamikos pasiskirstymą ir bandinio paviršiaus morfologiją. Skenuojančios daugiakanalės mikroskopijos galimybės iliustruojamos polinių InGaN epitaksinių sluoksnių ir nepolinių InGaN/GaN kvantinių duobių tyrimais. SAOM eksperimentai sudarė galimybes ištirti dvimates energijos juostų potencialo variacijas, jų fizikinę prigimtį ir koreliaciją su bandinio paviršiaus morfologija. Taip pat buvo pademonstruotas spindulinės ir nespindulinės rekombinacijos laikų erdvinis netolygumas. Galiausiai parodyta, kaip matuojant keliais SAOM režimais tuo pat metu galima įvertinti ambipolinę krūvininkų difuziją ir jos anizotropiją.


References / Nuorodos

[1] J. Jimenez and J.T. Tomm, Spectroscopic Analysis of Optoelectronic Semiconductors (Springer, Berlin, 2016),
https://doi.org/10.1007/978-3-319-42349-4
[2] I. Pelant and J. Valenta, Luminescence Spectroscopy of Semiconductors (Oxford Scholarship Online, Oxford, 2012),
https://doi.org/10.1093/acprof:oso/9780199588336.001.0001
[3] E. Betzig and J.K. Trautman, Near-field optics: microscopy, spectroscopy and surface modification beyond the diffraction limit, Science 257(5067), 189–195 (1992),
https://doi.org/10.1126/science.257.5067.189
[4] K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, Near-field optical mapping of exciton wave functions in a GaAs quantum dot, Phys. Rev. Lett. 91(17), 177401 (2003),
https://doi.org/10.1103/PhysRevLett.91.177401
[5] S. Patané, P.G. Gucciardi, M. Labardi, and M. Allegrini, Apertureless near-field optical microscopy, Riv. Nuovo Cimento 27(1), 1 (2004),
https://doi.org/10.1393/ncr/i2004-10001-9
[6] G. Steude, B.K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, Optical investigations of AlGaN on GaN epitaxial films, Appl. Phys. Lett. 74(17), 2456 (1999),
https://doi.org/10.1063/1.123879
[7] R. Ivanov, S. Marcinkevičius, T.K. Uždavinys, L.Y. Kuritzky, S. Nakamura, and J.S. Speck, Scanning near-field microscopy of carrier lifetimes in m-plane InGaN quantum wells, Appl. Phys. Lett. 110, 031109 (2017),
https://doi.org/10.1063/1.4974297
[8] A. Teke, S. Gökden, R. Tülek, J.H. Leach, Q. Fan, J. Xie, Ü. Özgür, H. Morkoç, S.B. Lisesivdin, and E. Özbay, The effect of AlN interlayer thicknesses on scattering processes in lattice-matched AlInN/GaN two-dimensional electron gas heterostructures, New J. Phys. 11, 063031 (2009),
https://doi.org/10.1088/1367-2630/11/6/063031
[9] A. Kaneta, R. Fujimoto, T. Hashimoto, K. Nishimura, M. Funato, and Y. Kawakami, Instrumentation for dual-probe scanning near-field optical microscopy, Rev. Sci. Instrum. 83, 083709 (2012),
https://doi.org/10.1063/1.4737883
[10] D. Watson-Parris, M.J. Godfrey, P. Dawson, R.A. Oliver, M.J. Galtrey, M.J. Kappers, and C.J. Humphreys, Carrier localization mechanisms in InxGa1–xN/GaN quantum wells, Phys. Rev. B 83, 115321 (2011),
https://doi.org/10.1103/PhysRevB.83.115321
[11] T.K. Uždavinys, D.L. Becerra, R. Ivanov, S. Nakamura, S.P. DenBaars, J.S. Speck, and S. Marcinkevičius, Influence of well width fluctuations on recombination properties in semipolar InGaN quantum wells studied by time- and spatially-resolved near-field photoluminescence, Opt. Mater. Express 7(9), 3116–3123 (2017),
https://doi.org/10.1364/OME.7.003116
[12] K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.F. Huang, Y.C. Cheng, and C.C. Yang, Exciton hopping in InxGa1–xN multiple quantum wells, Phys. Rev. B 71, 085306 (2005),
https://doi.org/10.1103/PhysRevB.71.085306
[13] V. Liuolia, S. Marcinkevičius, Y.D. Lin, H. Ohta, S.P. DenBaars, and S. Nakamura, Carrier localization in m-plane InGaN/GaN quantum wells probed by scanning near field optical spectroscopy, Appl. Phys. Lett. 97, 151106 (2010),
https://doi.org/10.1063/1.3502482
[14] T.-J. Yang, R. Shivaraman, J.S. Speck, and Y.-R. Wu, The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior, J. Appl. Phys. 116, 113104 (2014),
https://doi.org/10.1063/1.4896103
[15] S. Pereira, M.R. Correia, E. Pereira, K.P. O'Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, Compositional pulling effects in InxGa1–xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study, Phys. Rev. B 64, 205311 (2001),
https://doi.org/10.1103/PhysRevB.64.205311
[16] A. Mouti, J.-L. Rouvière, M. Cantoni, J.-F. Carlin, E. Feltin, N. Grandjean, and P. Stadelmann, Stress-modulated composition in the vicinity of dislocations in nearly lattice matched AlxIn1–xN/GaN heterostructures: A possible explanation of defect insensitivity, Phys. Rev. B 83, 195309 (2011),
https://doi.org/10.1103/PhysRevB.83.195309
[17] S. Marcinkevičius, Y. Zhao, K.M. Kelchner, S. Nakamura, S.P. DenBaars, and J.S. Speck, Near-field investigation of spatial variations of (202¯1¯\overline{1}) InGaN quantum well emission spectra, Appl. Phys. Lett. 103, 131116 (2013),
https://doi.org/10.1063/1.4823589
[18] T. Lermer, I. Pietzonka, A. Avramescu, G. Brüderl, J. Müller, S. Lutgen, and U. Strauss, Interdependency of surface morphology and wavelength fluctuations of indium-rich InGaN/GaN quantum wells, Phys. Status Solidi A 208(5), 1199–1202 (2011),
https://doi.org/10.1002/pssa.201000695
[19] K.M. Kelchner, L.Y. Kuritzky, K. Fujito, S. Nakamura, S.P. DenBaars, and J.S. Speck, Emission characteristics of single InGaN quantum wells on misoriented nonpolar m-plane bulk GaN substrates, J. Cryst. Growth 382, 80–86 (2013),
https://doi.org/10.1016/j.jcrysgro.2013.08.013
[20] R. Ivanov, S. Marcinkevičius, M. Mensi, O. Martinez, L.Y. Kuritzky, D.J. Myers, S. Nakamura, and J.S. Speck, Polarization resolved near-field spectroscopy of localized states in nonpolar InGaN/GaN quantum wells, Phys. Rev. Appl. 7, 064033 (2017),
https://doi.org/10.1103/PhysRevApplied.7.064033
[21] N.A.K. Kaufmann, L. Lahourcade, B. Hourahine, D. Martin, and N. Grandjean, Critical impact of Ehrlich–Schwöbel barrier on GaN surface morphology during homoepitaxial growth, J. Cryst. Growth 433, 36–42 (2016),
https://doi.org/10.1016/j.jcrysgro.2015.06.013
[22] T.K. Uždavinys, S. Marcinkevičius, M. Mensi, L. Lahourcade, J.-F. Carlin, D. Martin, R. Butté, and N. Grandjean, Impact of surface morphology on the properties of light emission in InGaN epilayers, Appl. Phys. Express 11, 051004 (2018),
https://doi.org/10.7567/APEX.11.051004
[23] M.H. Xie, S.M. Seutter, W.K. Zhu, L.X. Zheng, H. Wu, and S.Y. Tong, Anisotropic step-flow growth and island growth of GaN(0001) by molecular beam epitaxy, Phys. Rev. Lett. 82(13), 2749–2752 (1999),
https://doi.org/10.1103/PhysRevLett.82.2749
[24] J.E. Northrup and J. Neugebauer, Indium induced changes in GaN(0001) surface morphology, Phys. Rev. B 60(12), R8473–R8476 (1999),
https://doi.org/10.1103/PhysRevB.60.R8473
[25] P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K.H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes, Nature 406, 865–868 (2000),
https://doi.org/10.1038/35022529
[26] S. Marcinkevičius, K.M. Kelchner, L.Y. Kuritzky, S. Nakamura, S.P. DenBaars, and J.S. Speck, Highly polarized photoluminescence and its dynamics in (202¯\overline{2}1¯\overline{1}) InGaN/GaN quantum well, Appl. Phys. Lett. 103, 111107 (2013),
https://doi.org/10.1063/1.4820839
[27] O. Marquardt, T. Hickel, J. Neugebauer, and C.G. Van de Walle, Polarization effects due to thickness fluctuations in nonpolar InGaN/GaN quantum wells, Appl. Phys. Lett. 103, 073115 (2013),
https://doi.org/10.1063/1.4818752
[28] R. Ivanov, S. Marcinkevičius, Y. Zhao, D.L. Becerra, S. Nakamura, S.P. DenBaars, and J.S. Speck, Impact of carrier localization on radiative recombination times in semipolar (202¯\overline{2}1) plane InGaN/GaN quantum wells, Appl. Phys. Lett. 107, 211109 (2015),
https://doi.org/10.1063/1.4936386
[29] S. Schulz, D.P. Tanner, E.P. O'Reilly, M.A. Caro, T.L. Martin, P.A.J. Bagot, M.P. Moody, F. Tang, J.T. Griffiths, F. Oehler, M.J. Kappers, R.A. Oliver, C.J. Humphreys, D. Sutherland, M.J. Davies, and P. Dawson, Structural, electronic, and optical properties of m-plane InGaN/GaN quantum wells: Insights from experiment and atomistic theory, Phys. Rev. B 92, 235419 (2015),
https://doi.org/10.1103/PhysRevB.92.235419
[30] H. Masui, H. Yamada, K. Iso, S. Nakamura, and S.P. DenBaars, Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure, J. Phys. D 41, 225104 (2008),
https://doi.org/10.1088/0022-3727/41/22/225104
[31] W. Shan, T.J. Schmidt, X.H. Yang, S.J. Hwang, J.J. Song, and B. Goldenberg, Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 66, 985 (1994),
https://doi.org/10.1063/1.113820
[32] N. Rotenberg and L. Kuipers, Mapping nanoscale light fields, Nat. Photonics 8, 919 (2014),
https://doi.org/10.1038/nphoton.2014.285
[33] Y.J. Sun, O. Brandt, M. Ramsteiner, H.T. Grahn, and K.H. Ploog, Polarization anisotropy of the photoluminescence of M-plane (In, Ga)N/GaN multiple quantum wells, Appl. Phys. Lett. 82(22), 3850–3852 (2003),
https://doi.org/10.1063/1.1579563
[34] C. Mounir, U.T. Schwarz, I.L. Koslow, M. Kneissl, T. Wernicke, T. Schimpke, and M. Strassburg, Impact of inhomogeneous broadening on optical polarization of high-inclination semipolar and nonpolar InxGa1–xN/GaN quantum wells, Phys. Rev. B 93, 235314 (2016),
https://doi.org/10.1103/PhysRevB.93.235314
[35] S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, S.P. DenBaars, and J.S. Speck, Highly polarized photoluminescence and its dynamics in (202¯\overline{2}1¯\overline{1}) InGaN/GaN quantum well, Appl. Phys. Lett. 104, 111113 (2014),
https://doi.org/10.1063/1.4869459
[36] L. Schade, U.T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells, Phys. Status Solidi B 248(3), 638–646 (2011),
https://doi.org/10.1002/pssb.201046350
[37] K. Alberi, B. Fluegel, H. Moutinho, R.G. Dhere, J.V. Li, and A. Mascarenhas, Measuring long-range carrier diffusion across multiple grains in polycrystalline semiconductors by photoluminescence imaging, Nat. Commun. 4, 2699 (2013),
https://doi.org/10.1038/ncomms3699
[38] R. Aleksiejūnas, M. Sūdžius, V. Gudelis, T. Malinauskas, K. Jarašiūnas, Q. Fareed, R. Gaska, M.S. Shur, J. Zhang, J. Yang, E. Kuokštis, and M.A. Khan, Carrier transport and recombination in InGaN/GaN heterostructures, studied by optical four-wave mixing technique, Phys. Status Solidi C 0(7), 2686–2690 (2003),
https://doi.org/10.1002/pssc.200303261
[39] M. Mensi, R. Ivanov, T.K. Uždavinys, K.M. Kelchner, S. Nakamura, S.P. DenBaars, J.S. Speck, and S. Marcinkevičius, Direct measurement of nanoscale lateral carrier diffusion: toward scanning diffusion microscopy, ACS Photonics 5(2), 528–534 (2018),
https://doi.org/10.1021/acsphotonics.7b01061
[40] S.-H. Park, D. Ahn, and S.L. Chuang, Electronic and optical properties of a- and m-plane wurtzite InGaN-GaN quantum wells, IEEE J. Quantum Electron. 43(12), 1175–1182 (2007),
https://doi.org/10.1109/JQE.2007.905009