Robert Horvath, Jean-François Roux, Jean-Louis Coutaz, and
Julien Poëtte
References
/
Nuorodos
[1] D.H. Auston, K.P. Cheung, and P.R. Smith, Picosecond
photoconductive Hertzian dipoles, Appl. Phys. Lett.
45,
284–286 (1984),
https://doi.org/10.1063/1.95174
[2] D.H. Auston, in:
Picosecond Optoelectronic Devices,
ed. C. H. Lee (Academic-Press, New York, 1983),
https://www.elsevier.com/books/picosecond-optoelectronic-devices/lee/978-0-12-440880-7
[3] D. Grischkowsky, S. Keiding, M. van Exter, and Ch.
Fattinger, Far-infrared time-domain spectroscopy with terahertz
beams of dielectrics and semiconductors, J. Opt. Soc. Am. B
7,
2006–2015 (1990),
https://doi.org/10.1364/JOSAB.7.002006
[4] M.Y. Frankel, J.F. Whitaker, G.A. Mourou, F.W. Smith, and
A.R. Calawa, High-voltage picosecond photoconductor switch based
on low-temperature-grown GaAs, IEEE Trans. Electron Devices
37,
2493–2498 (1990),
https://doi.org/10.1109/16.64523
[5] L.Y. Nathawad, R. Urata, B. Wooley, and D.A.B. Miller, A
40-GHz-bandwidth, 4 bit, time-interleaved A/D converter using
photoconductive sampling, IEEE J. Solid-State Circuits
38,
2021–2030 (2003),
https://doi.org/10.1109/JSSC.2003.819172
[6] M.B. Kuppam, J.-F. Lampin, E. Peytavit, J.-F. Roux, and
J.-L. Coutaz, Study of ultrafast semiconductor photoswitches for
CW RF signal sampling and modulation, IEEE J. Lightwave Technol.
32, 3839–3845 (2014),
https://doi.org/10.1109/JLT.2014.2334063
[7] S. Chou, Y. Liu, W. Khalil, H. Wan, T. Hsiang, and S.
Alexandrou, Ultrafast nanoscale MSM photodetectors on bulk and
low-temperature grown GaAs, Appl. Phys. Lett.
61,
819–821 (1992),
https://doi.org/10.1063/1.107755
[8] A. Krotkus and J.-L. Coutaz, Non-stoichiometric
semiconductor materials for terahertz optoelectronics
applications, Semicond. Sci. Technol.
20, S142–S150
(2009),
https://doi.org/10.1088/0268-1242/20/7/004
[9] A. Krotkus, K. Bertulis, M. Kaminska, K. Korona, A. Wolos,
J. Siegert, S. Marcinkevicius, J.-F. Roux, and J.-L. Coutaz,
Be-doped low-temperature-grown GaAs material for optoelectronic
switches, IEE Proc. Optoelectron.
149, 111–115 (2002),
https://doi.org/10.1049/ip-opt:20020435
[10] A. Krotkus, S. Marcinkevicius, J. Jasinski, M. Kaminska,
H.H. Tan, and C. Jagadish, Picosecond carrier lifetime in GaAs
implanted with high doses of As ions: An alternative material to
low-temperature GaAs for optoelectronic applications, Appl.
Phys. Lett.
66, 3304–3306 (1995),
https://doi.org/10.1063/1.113738
[11] A. Singh, S. Pal, H. Surdi, S.S. Prabhu, S. Mathimalar, V.
Nanal, R.G. Pillay, and G.H. Döhler, Carbon irradiated semi
insulating GaAs for photoconductive terahertz pulse detection,
Opt. Express
23, 6656–6661 (2015),
https://doi.org/10.1364/OE.23.006656
[12] A.J. Seeds and K.J. Williams, Microwave photonics, J.
Lightwave Technol.
24, 4628–4641 (2006),
https://doi.org/10.1109/JLT.2006.885787
[13] T. Nagatsuma, G. Ducournau, and C.C. Renaud, Advances in
terahertz communications accelerated by photonics, Nat.
Photonics
10, 371–379 (2016),
https://doi.org/10.1038/nphoton.2016.65
[14] H.-J. Song, T.-W. Kim, S.J. Jo, C.-H. Lim, K.-H. Oh, S.-G.
Ihn, and J.-I. Song, Microwave photonic mixer utilizing an
InGaAs photoconductor for radio over fibre applications, IEICE
Trans. Electron.
90, 457–464 (2007),
https://doi.org/10.1093/ietele/e90-c.2.457
[15] Y. Chen, S.S. Prabhu, S.E. Ralph, and D.T. McInturff,
Trapping and recombination dynamics of low-temperature-grown
InGaAs/InAlAs multiple quantum wells, Appl. Phys. Lett.
72,
439–442 (1998),
https://doi.org/10.1063/1.120766
[16] J. Mangeney, L. Joulaud, P. Crozat, and J.-M. Lourtioz,
Ultrafast response (∼2.2 ps) of ion-irradiated InGaAs
photoconductive switch at 1.55 μm, Appl. Phys. Lett.
83,
5551 (2004),
https://doi.org/10.1063/1.1633030
[17] C. Carmody, H.H. Tan, C. Jagadish, A. Gaarder, and S.
Marcinkevicius, Ion-implanted In
0.53Ga
0.47As
for ultrafast optoelectronic applications, Appl. Phys. Lett.
82,
3913–3915 (2003),
https://doi.org/10.1063/1.1579565
[18] O. Hatem, J. Cunningham, E.H. Linfield, C.D. Wood, A.G.
Davies, P.J. Cannard, M.J. Robertson, and D.G. Moodie,
Terahertz-frequency photoconductive detectors fabricated from
metal-organic chemical vapor deposition-grown Fe-doped InGaAs,
Appl. Phys. Lett.
98, 121107 (2011),
https://doi.org/10.1063/1.3571289
[19] B. Globisch, R. Dietz, S. Nellen, T. Göbel, and M. Schell,
Terahertz detectors from Be-doped low-temperature grown
InGaAs/InAlAs: Interplay of annealing and terahertz performance,
AIP Adv.
6, 125011 (2016),
https://doi.org/10.1063/1.4971843
[20] C. Graham, R. Gwilliam, and A. Seeds, Nitrogen ion
implanted InP based photo-switch, Opt. Express
20,
26696–26703 (2012),
https://doi.org/10.1364/OE.20.026696
[21] M. Bieler, H. Füser, and K. Pierz, Time-domain
optoelectronic vector network analysis on coplanar waveguides,
IEEE Trans. Microw. Theory Techn.
63, 3775–3784 (2015),
https://doi.org/10.1109/TMTT.2015.2481426
[22] H. Eusèbe, J.F. Roux, J.L. Coutaz, and A. Krotkus,
Photoconductivity sampling of low-temperature-grown Be-doped
GaAs layers, J. Appl. Phys.
98, 033711 (2005),
https://doi.org/10.1063/1.2001151
[23] M.Y. Frankel, S. Gupta, J.A. Valdmanis, and G.A. Mourou,
Terahertz attenuation and dispersion characteristics of coplanar
transmission lines, IEEE Trans. Microw. Theory Techn.
39,
910–916 (1991),
https://doi.org/10.1109/22.81658
[24] C. Kastl, C. Karnetzky, A. Brenneis, F. Langrieger, and A.
Holleitner, Topological insulators as ultrafast Auston switches
in on-chip THz-circuits, IEEE J. Sel. Top. Quantum Electron.
23,
1–5 (2017),
https://doi.org/10.1109/JSTQE.2016.2641343
[25] K. Grigoras, A. Krotkus, and A. Deringas, Picosecond
lifetime measurement in semiconductor by optoelectronic
autocorrelation, Electron. Lett.
27, 1024–1025 (1991),
https://doi.org/10.1049/el:19910637
[26] A. Krotkus, S. Marcinkevicius, K. Grigoras, V.
Pasiskevicius, and J.A. Tellefsen, Ultrafast carrier relaxation
in low-temperature grown InxGa1-xAs layers, in:
Proceedings
of the 1994 Conference on Lasers and Electro-Optics Europe
(Institute of Electrical & Electronics Engineers (IEEE),
USA, 1994) pp. 365–366,
https://doi.org/10.1109/CLEOE.1994.636646
[27] C.-S. Choi, H.-S. Kang, W.-Y. Choi, D.-H. Kim, and K.-S.
Seo, Phototransistors based on InP HEMTs and their applications
to millimeter-wave radio-on-fibre systems, IEEE Trans. Microw.
Theory Techn.
53, 256–263 (2005),
https://doi.org/10.1109/TMTT.2004.839323
[28] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, 10-Gb/s
millimeter-wave signal generation using photodiode bias
modulation, J. Lightwave Technol.
24, 1725–1731 (2006),
https://doi.org/10.1109/JLT.2006.871066
[29] E. Rouvalis, M. Fice, C. Renaud, and A. Seeds,
Optoelectronic detection of millimetre-wave signals with
travelling-wave uni-travelling carrier photodiodes, Opt. Express
19, 2079–2084 (2011),
https://doi.org/10.1364/OE.19.002079
[30] F. Brendel, J. Poëtte, B. Cabon, T. Zwick, F. van Dijk, F.
Lelarge, and A. Accard, Chromatic dispersion in 60 GHz
radio-over-fibre networks based on mode-locked lasers, J.
Lightwave Technol.
29, 3810–3816 (2011),
https://doi.org/10.1109/JLT.2011.2173902
[31] E. Peytavit, F. Pavanello, G. Ducournau, and J.-F. Lampin,
Highly efficient terahertz detection by optical mixing in a GaAs
photoconductor, Appl. Phys. Lett.
103, 201107 (2013),
https://doi.org/10.1063/1.4830360
[32] B. Sklar,
Digital Communication: Fundamentals and
Applications, 2nd ed. (Prentice Hall, Upper Saddle River,
2009),
https://www.pearson.com/us/higher-education/program/Sklar-Digital-Communications-Fundamentals-and-Applications-2nd-Edition/PGM127356.html