[PDF]    https://doi.org/10.3952/physics.v58i1.3655

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 99–107 (2018)


COMPACT DIFFRACTIVE OPTICS FOR THz IMAGING
Linas Minkevičius, Simonas Indrišiūnas, Ramūnas Šniaukas, Gediminas Račiukaitis, Vytautas Janonis, Vincas Tamošiūnas, Irmantas Kašalynas, and Gintaras Valušis
Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
E-mail: linas.minkevicius@ftmc.lt

Received 16 January 2018; accepted 22 March 2018

We present a compact diffractive silicon-based multilevel phase Fresnel lens (MPFL) with up to 50 mm in diameter and a numerical aperture up to 0.86 designed and fabricated for compact terahertz (THz) imaging systems. The laser direct writing technology based on a picosecond laser was used to fabricate diffractive optics on silicon with a different number of phase quantization levels P reaching an almost kinoform spherical surface needed for efficient THz beam focusing. Focusing performance was investigated by measuring Gaussian beam intensity distribution in the focal plane and along the optical axis of the lens. The beam waist and the focal depth for each MPFL were evaluated. The influence of the phase quantization number on the focused beam amplitude was estimated, and the power transmission efficiency reaching more than 90% was revealed. The THz imaging of less than 1 mm using a robust 50 mm diameter multilevel THz lens was achieved and demonstrated at 580 GHz frequency.
Keywords: binary optics, diffractive lenses, phase shift, three-dimensional fabrication, lenses, lens system design
PACS: 42.15.Eq, 42.79.Bh

KOMPAKTINĖ DIFRAKCINĖ OPTIKA TERAHERCŲ VAIZDINIMO SISTEMOMS
Linas Minkevičius, Simonas Indrišiūnas, Ramūnas Šniaukas, Gediminas Račiukaitis, Vytautas Janonis, Vincas Tamošiūnas, Irmantas Kašalynas, Gintaras Valušis

Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Darbe pristatomi kompaktiški silicyje suformuoti difrakciniai Frenelio lęšiai, skirti terahercinio dažnio (THz) vaizdinimo sistemoms. Jie pagaminti naudojant lazerinės abliacijos technologiją. Šiuo metodu silicio paviršiuje suformuota 5 ir 10 mm židinio nuotolio difrakcinė zoninė plokštelė su skirtingais fazinio kvantavimo lygiais pasiekiant beveik tolygų sferinį paviršių, reikalingą efektyviam THz spinduliuotės fokusavimui. Šių lęšių skersmuo siekia iki 50 mm, o skaitinė apertūra neviršija 0,86 mm. Fokusavimo efektyvumas ištirtas matuojant Gauso pluošto intensyvumo pasiskirstymą židinio plokštumoje ir optinės ašies kryptimi. Įvertintas sufokusuoto Gauso pluošto sąsmaukos plotis ir kiekvienos Frenelio lęšio konfigūracijos židinio gylis. Išmatavus fazinio kvantavimo skaičiaus įtaką fokusuotos spinduliuotės amplitudei nustatyta, kad 8 pazonių difrakcinio lęšio fokusavimo efektyvumas sotinasi, kai pralaidumo koeficientas pasiekia daugiau nei 90 %. Atlikti THz vaizdinimo eksperimentai parodė, kad naudojant tvirtą 50 mm Frenelio lęšį galima pasiekti geresnę nei 1 mm skyrą ties 580 GHz dažniu.


References / Nuorodos

[1] P. Lopato, G. Psuj, and B. Szymanik, Nondestructive inspection of thin basalt fiber reinforced composites using combined terahertz imaging and infrared thermography, Adv. Mater. Sci. Eng. 2016, 1–13 (2016),
https://doi.org/10.1155/2016/1249625
[2] K.W. Kim, K.-S. Kim, H. Kim, S.H. Lee, J.-H. Park, J.-H. Han, S.-H. Seok, J. Park, Y. Choi, Y.I Kim, J.K. Han, and J.-H. Son, Terahertz dynamic imaging of skin drug absorption, Opt. Express 20(9), 9476–9484 (2012),
https://doi.org/10.1364/OE.20.009476
[3] J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, and T. Rades, Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting – a review, J. Pharm. Pharmacol. 59(2), 209–223 (2007),
https://doi.org/10.1211/jpp.59.2.0008
[4] I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues, Sensors 16(4), 432 (2016),
https://doi.org/10.3390/s16040432
[5] L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon, Opt. Lett. 42(10), 1875 (2017),
https://doi.org/10.1364/OL.42.001875
[6] B. Voisiat, S. Indrišiūnas, R. Šniaukas, L. Minkevičius, I. Kašalynas, and G. Račiukaitis, Laser processing for precise fabrication of the THz optics, Proc. SPIE 10091, 100910F (2017),
https://doi.org/10.1117/12.2253634
[7] J.M. Rodríguez, H.D. Hristov, and W. Grote, Fresnel zone plate and ordinary lens antennas: Comparative study at microwave and terahertz frequencies, in: 41st European Microwave Conference (IEEE, Manchester, 2011) pp. 894–897,
[PDF]
[8] J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations, Appl. Surf. Sci. 245(1), 102–108 (2005),
https://doi.org/10.1016/j.apsusc.2004.09.113
[9] C.A. Zuhlke, T.P. Anderson, and D.R. Alexander, Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses, Opt. Express 21(7), 8460 (2013),
https://doi.org/10.1364/OE.21.008460
[10] I. Kašalynas, R. Venckevičius, L. Tumonis, B. Voisiat, D. Seliuta, G. Valušis, and G. Račiukaitis, Reflective terahertz imaging with the TEM01 mode laser beam, Appl. Opt. 52(23), 5640 (2013),
https://doi.org/10.1364/AO.52.005640
[11] J. Trontelj, G. Valušis, R. Venckevičius, I. Kašalynas, A. Sešek, and A. Švigelj, A high performance room temperature THz sensor, Proc. SPIE 9199, 91990K (2014),
https://doi.org/10.1117/12.2060692
[12] Y. Zhang, C. Zheng, and Y. Zhuang, Effect of the shadowing in high-numerical-aperture binary phase Fresnel zone plates, Opt. Commun. 317, 88–92 (2014),
https://doi.org/10.1016/j.optcom.2013.10.039
[13] E.D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S.M. Durbin, X.-C. Zhang, and D.R.S. Cumming, Multilevel silicon diffractive optics for terahertz waves, J. Vac. Sci. Technol. B 20(6), 2780 (2002),
https://doi.org/10.1116/1.1518021
[14] S. Indrišiūnas, B. Voisiat, A. Rėza, I. Šimkienė, R. Mažeikienė, A. Selskis, and G. Račiukaitis, Effect of laser-induced conversion of silicon nitride to silicon oxy-nitride on antireflective properties of passivation layer in polysilicon solar cells, Opt. Mater. Express 5(7), 1532 (2015),
https://doi.org/10.1364/OME.5.001532
[15] M.E. Shaheen, J.E. Gagnon, and B.J. Fryer, Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study, Laser Phys. 24(10), 106102 (2014),
https://doi.org/10.1088/1054-660X/24/10/106102
[16] L. Minkevičius, B. Voisiat, A. Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, and V. Tamošiūnas, Terahertz zone plates with integrated laser-ablated bandpass filters, Electron. Lett. 49(1), 49–50 (2013),
https://doi.org/10.1049/el.2012.3509
[17] L. Minkevičius, K. Madeikis, B. Voisiat, I. Kašalynas, R. Venckevičius, G. Račiukaitis, V. Tamošiūnas, and G. Valušis, Focusing performance of terahertz zone plates with integrated cross-shape apertures, J. Infrared Millim. Terahertz Waves 35(9), 699–702 (2014),
https://doi.org/10.1007/s10762-014-0086-8
[18] L. Minkevičius, V. Tamošiūnas, I. Kašalynas, R. Venckevičius, K. Madeikis, B. Voisiat, D. Seliuta, G. Račiukaitis, and G. Valušis, On-chip integration solutions of compact optics and detectors in room-temperature terahertz imaging systems, Proc. SPIE 9585, 95850M (2015),
https://doi.org/10.1117/12.2187921