[PDF]    https://doi.org/10.3952/physics.v58i2.3743

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 135–148 (2018)


ON THE INFLUENCE OF LOW-ENERGY IONIZING RADIATION ON THE AMINO ACID MOLECULE: VALINE CASE
Jelena Tamulienėa, Liudmila Romanovab, Vasyl Vukstichb, Alexander Pappb, Laura Baliulytėa, and Alexander Snegurskyb
aInstitute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, 10222 Vilnius, Lithuania
bInstitute of Electron Physics, National Academy of Sciences of Ukraine, 21 Universitetska Street, 88017 Uzhgorod, Ukraine
E-mail: jelena.tamuliene@tfai.vu.lt
Received 2 November 2017; revised 19 December 2017; accepted 21 June 2018

New data on the valine molecule (C5H11NO2) fragmentation under the low-energy electron-impact are presented. These data are related to the formation of ionized products due to the ionizing radiation influence on the above amino acid molecule. A series of the fragments produced are identified by applying an extensive DFT-theory approach. The results obtained allowed the principal pathways of the valine molecule fragmentation to be found. The absolute appearance energies of some fragments are both measured experimentally and calculated theoretically. The experimental and theoretical data are compared and analysed.
Keywords: valine, ionizing radiation, mass spectrum, fragmentation
PACS: 31.15. A, 33.15.Ta, 34.80.Ht

JONIZUOJANČIOSIOS SPINDULIUOTĖS ĮTAKA AMINORŪGŠČIŲ MOLEKULĖMS: VALINO ATVEJIS
Jelena Tamulienėa, Liudmila Romanovab, Vasyl Vukstichb, Alexander Pappb, Laura Baliulytėa, Alexander Snegurskyb

aVilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
bUkrainos nacionalinės mokslų akademijos Elektronų fizikos institutas, Užgorodas, Ukraina

Darbe pateikti nauji valino molekulės (C5H11NO2) fragmentacijos dėl žemos energijos elektronų, atsirandančių esant jonizuojančiai spinduliuotei, poveikio tyrimai. Pateikiame eksperimentiškai išmatuotas valino fragmentų atsiradimo energijos vertes ir masės spektrą. Taikant tankio funkcionalo teorijos B3LYP/cc-pVTZ artinį, buvo patikslinta minėtame masės spektre matomų fragmentų cheminė sudėtis ir geometrinė struktūra bei įvertinta jų atsiradimo energija. Atlikus gautų teorinių ir eksperimentinių rezultatų analizę, nustatytos tikimiausios valino molekulių suskaidymo reakcijos, kurios taip pat pateiktos šiame darbe.

References / Nuorodos

[1] B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, and L. Sanche, Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons, Science 287, 1658 (2000),
https://doi.org/10.1126/science.287.5458.1658
[2] J.F. Ward, Molecular mechanisms of radiation-induced damage to nucleic acids, in: Advances in Radiation Biology, Vol. 5, eds. J.T. Lett and H. Adler (Academic Press, New York, 1975) pp. 181–239,
https://doi.org/10.1016/B978-0-12-035405-4.50011-6
[3] A. Sak, M. Stuschke, R. Wurm, and V. Budach, Protection of DNA from radiation-induced double-strand breaks: influence of replication and nuclear proteins, Int. J. Radiat. Biol. 76, 749 (2000),
https://doi.org/10.1080/09553000050028896
[4] A. Valota, F. Ballarini, W. Friedland, P. Jacob, A. Ottolenghi, and H.G. Paretzke, Modelling study on the protective role of OH radical scavengers and DNA higher-order structures in induction of single- and double-strand break by gamma-radiation, Int. J. Radiat. Biol. 79, 643 (2003),
https://doi.org/10.1080/09553000310001596977
[5] S. Denifl, I. Mähr, F. Ferreira da Silva, F. Zappa, T.D. Märk, and P. Scheier, Electron impact ionization studies with the amino acid valine in the gas phase and (hydrated) in helium droplets, Eur. Phys. J. D 51, 73 (2009),
https://doi.org/10.1140/epjd/e2008-00092-4
[6] C. Michaux, J. Wouters, D. Jacquemin, and E.A. Perpète, A theoretical investigation of the hydrated glycine cation energetics and structures, Chem. Phys. Lett. 445, 57 (2007),
https://doi.org/10.1016/j.cplett.2007.07.068
[7] V.S. Vukstich, A.I. Imre, L.G. Romanova, and A.V. Snegursky, Fragmentation of the glycine molecule by low-energy electrons, J. Phys. B 43, 185208-1 (2010),
https://doi.org/10.1088/0953-4075/43/18/185208
[8] V.S. Vukstich, A.I. Imre, and A.V. Snegursky, Modernization of the MI1201 mass spectrometer for studying the electron–molecule interaction processes at low electron energies, Instr. Exper. Tech. 54, 66 (2011),
https://doi.org/10.1134/S0020441211020205
[9] V.S. Vukstich, L.G. Romanova, I.G. Megela, and A.V. Snegursky, Mass-spectrometric study of the electron-impact-induced fragmentation of the tryptophan molecule, Tech. Phys. Let. 40, 263 (2014),
https://doi.org/10.1134/S1063785014030195
[10] Mass Spectrometry: Instrumentation, Interpretation, and Applications, eds. R. Ekman, J. Silberring, A. Westman-Brinkmalm, A. Kraj, series eds. D.M. Desiderio, and N.M. Nibbering (John Wiley & Sons, 2009) 358 p.
https://doi.org/10.1002/9780470395813
[11] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 5648 (1993),
https://doi.org/10.1063/1.464913
[12] R.A. Kendall, T.H. Dunning Jr., and R.J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys. 96, 6796 (1992),
https://doi.org/10.1063/1.462569
[13] J.T. Bursey, M.M. Bursey, and D.G.I. Kingston, Intramolecular hydrogen transfer in mass spectra. I. Rearrangements in aliphatic hydrocarbons and aromatic compounds, Chem. Rev. 73, 191 (1973),
https://doi.org/10.1021/cr60283a001
[14] S. Dokmaisrijan, V.S. Lee, and P. Nimmanpipug, The gas phase conformers and vibrational spectra of valine, leucine and isoleucine: An ab initio study, J. Mol. Struct. Theochem 953, 28 (2010),
https://doi.org/10.1016/j.theochem.2010.04.033
[15] P. Papp, J. Urban, Š. Matejčik, M. Stano, and O. Ingolfsson, Dissociative electron attachment to gas phase valine: A combined experimental and theoretical study, J. Chem. Phys. 125, 204301 (2006),
https://doi.org/10.1063/1.2400236
[16] S.G. Stepanian, I.D. Reva, E.D. Radchenko, and L. Adamowicz, Combined matrix-isolation infrared and theoretical DFT and ab initio study of the nonionized valine conformers, J. Phys. Chem. A 103, 4404 (1999),
https://doi.org/10.1021/jp984457v
[17] H.-W. Jochims, M. Schwell, J.-L. Chotin, M. Clemino, F. Dulieu, H. Baumgärtel, and S. Leach, Photoion mass spectrometry of five amino acids in the 6–22 eV photon energy range, Chem. Phys. 298, 279 (2004),
https://doi.org/10.1016/j.chemphys.2003.11.035
[18] L. Klasinc, Application of photoelectron spectroscopy to biologically active molecules and their constituent parts: III. Amino acids, J. Electron Spectrosc. Relat. Phenom. 8, 161 (1976),
https://doi.org/10.1016/0368-2048(76)80018-7
[19] NIST Chemistry WebBook,
https://webbook.nist.gov
[20] G. Hanel, B. Gstir, T. Fiegele, F. Hagelberg, K. Becker, P. Scheier, A.V. Snegursky, and T.D. Märk, Isotope effects in the electron impact ionization of H2/D2, H2O/D2O and C6H6/C6D6 near threshold, J. Chem. Phys. 166, 2456 (2002),
https://doi.org/10.1063/1.1428341
[21] R.S. Mulliken, Electronic population analysis on LCAO-MO molecular wave functions. I, J. Chem. Phys. 23, 1833 (1955),
https://doi.org/10.1063/1.1740588
[22] S. Denifl, H.D. Flosadóttir, A. Edtbauer, O. Ingólfsson, T.D. Märk, and P. Scheier, A detailed study on the decomposition pathways of the amino acid valine upon dissociative electron attachment, Eur. Phys. J. D 60, 37 (2010),
https://doi.org/10.1140/epjd/e2010-00060-5
[23] G. Junk and H. Svec, The mass spectra of the α-amino acids, J. Am. Chem. Soc. 85, 839 (1963),
https://doi.org/10.1021/ja00890a001
[24] Y. Hu and E.R. Bernstein, Vibrational and photoionization spectroscopy of biomolecules: Aliphatic amino acid structures, J. Chem. Phys. 128, 164311 (2008),
https://doi.org/10.1063/1.2902980
[25] P. Papp, P. Shchukin, J. Kočíšek, and Š. Matejčik, Electron ionization and dissociation of aliphatic amino acids, J. Chem. Phys. 137, 10510-1 (2012),
https://doi.org/10.1063/1.4749244
[26] A.F. Lago, L.H. Coutinho, R.R.T. Marinho, A. Naves de Brito, and G.G.B. de Souza, Ionic dissociation of glycine, alanine, valine and proline as induced by VUV (21.21 eV) photons, Chem. Phys. 307, 9 (2004),
https://doi.org/10.1016/j.chemphys.2004.06.052