Received 2 November 2017; revised 19 December 2017; accepted 21
June 2018
References
/
Nuorodos
[1] B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, and L.
Sanche, Resonant formation of DNA strand breaks by low-energy (3
to 20 eV) electrons, Science
287, 1658 (2000),
https://doi.org/10.1126/science.287.5458.1658
[2] J.F. Ward, Molecular mechanisms of radiation-induced damage
to nucleic acids, in:
Advances in Radiation Biology,
Vol. 5, eds. J.T. Lett and H. Adler (Academic Press, New York,
1975) pp. 181–239,
https://doi.org/10.1016/B978-0-12-035405-4.50011-6
[3] A. Sak, M. Stuschke, R. Wurm, and V. Budach, Protection of
DNA from radiation-induced double-strand breaks: influence of
replication and nuclear proteins, Int. J. Radiat. Biol.
76,
749 (2000),
https://doi.org/10.1080/09553000050028896
[4] A. Valota, F. Ballarini, W. Friedland, P. Jacob, A.
Ottolenghi, and H.G. Paretzke, Modelling study on the protective
role of OH radical scavengers and DNA higher-order structures in
induction of single- and double-strand break by gamma-radiation,
Int. J. Radiat. Biol.
79, 643 (2003),
https://doi.org/10.1080/09553000310001596977
[5] S. Denifl, I. Mähr, F. Ferreira da Silva, F. Zappa, T.D.
Märk, and P. Scheier, Electron impact ionization studies with
the amino acid valine in the gas phase and (hydrated) in helium
droplets, Eur. Phys. J. D
51, 73 (2009),
https://doi.org/10.1140/epjd/e2008-00092-4
[6] C. Michaux, J. Wouters, D. Jacquemin, and E.A. Perpète, A
theoretical investigation of the hydrated glycine cation
energetics and structures, Chem. Phys. Lett.
445, 57
(2007),
https://doi.org/10.1016/j.cplett.2007.07.068
[7] V.S. Vukstich, A.I. Imre, L.G. Romanova, and A.V. Snegursky,
Fragmentation of the glycine molecule by low-energy electrons,
J. Phys. B
43, 185208-1 (2010),
https://doi.org/10.1088/0953-4075/43/18/185208
[8] V.S. Vukstich, A.I. Imre, and A.V. Snegursky, Modernization
of the MI1201 mass spectrometer for studying the
electron–molecule interaction processes at low electron
energies, Instr. Exper. Tech.
54, 66 (2011),
https://doi.org/10.1134/S0020441211020205
[9] V.S. Vukstich, L.G. Romanova, I.G. Megela, and A.V.
Snegursky, Mass-spectrometric study of the
electron-impact-induced fragmentation of the tryptophan
molecule, Tech. Phys. Let.
40, 263 (2014),
https://doi.org/10.1134/S1063785014030195
[10]
Mass Spectrometry: Instrumentation, Interpretation, and
Applications, eds. R. Ekman, J. Silberring, A.
Westman-Brinkmalm, A. Kraj, series eds. D.M. Desiderio, and N.M.
Nibbering (John Wiley & Sons, 2009) 358 p.
https://doi.org/10.1002/9780470395813
[11] A.D. Becke, Density-functional thermochemistry. III. The
role of exact exchange, J. Chem. Phys.
98, 5648 (1993),
https://doi.org/10.1063/1.464913
[12] R.A. Kendall, T.H. Dunning Jr., and R.J. Harrison, Electron
affinities of the first-row atoms revisited. Systematic basis
sets and wave functions, J. Chem. Phys.
96, 6796 (1992),
https://doi.org/10.1063/1.462569
[13] J.T. Bursey, M.M. Bursey, and D.G.I. Kingston,
Intramolecular hydrogen transfer in mass spectra. I.
Rearrangements in aliphatic hydrocarbons and aromatic compounds,
Chem. Rev.
73, 191 (1973),
https://doi.org/10.1021/cr60283a001
[14] S. Dokmaisrijan, V.S. Lee, and P. Nimmanpipug, The gas
phase conformers and vibrational spectra of valine, leucine and
isoleucine: An ab initio study, J. Mol. Struct. Theochem
953,
28 (2010),
https://doi.org/10.1016/j.theochem.2010.04.033
[15] P. Papp, J. Urban, Š. Matejčik, M. Stano, and O.
Ingolfsson, Dissociative electron attachment to gas phase
valine: A combined experimental and theoretical study, J. Chem.
Phys.
125, 204301 (2006),
https://doi.org/10.1063/1.2400236
[16] S.G. Stepanian, I.D. Reva, E.D. Radchenko, and L.
Adamowicz, Combined matrix-isolation infrared and theoretical
DFT and ab initio study of the nonionized valine conformers, J.
Phys. Chem. A
103, 4404 (1999),
https://doi.org/10.1021/jp984457v
[17] H.-W. Jochims, M. Schwell, J.-L. Chotin, M. Clemino, F.
Dulieu, H. Baumgärtel, and S. Leach, Photoion mass spectrometry
of five amino acids in the 6–22 eV photon energy range, Chem.
Phys.
298, 279 (2004),
https://doi.org/10.1016/j.chemphys.2003.11.035
[18] L. Klasinc, Application of photoelectron spectroscopy to
biologically active molecules and their constituent parts: III.
Amino acids, J. Electron Spectrosc. Relat. Phenom.
8,
161 (1976),
https://doi.org/10.1016/0368-2048(76)80018-7
[19]
NIST Chemistry WebBook,
https://webbook.nist.gov
[20] G. Hanel, B. Gstir, T. Fiegele, F. Hagelberg, K. Becker, P.
Scheier, A.V. Snegursky, and T.D. Märk, Isotope effects in the
electron impact ionization of H
2/D
2, H
2O/D
2O
and C
6H
6/C
6D
6 near
threshold, J. Chem. Phys.
166, 2456 (2002),
https://doi.org/10.1063/1.1428341
[21] R.S. Mulliken, Electronic population analysis on LCAO-MO
molecular wave functions. I, J. Chem. Phys.
23, 1833
(1955),
https://doi.org/10.1063/1.1740588
[22] S. Denifl, H.D. Flosadóttir, A. Edtbauer, O. Ingólfsson,
T.D. Märk, and P. Scheier, A detailed study on the decomposition
pathways of the amino acid valine upon dissociative electron
attachment, Eur. Phys. J. D
60, 37 (2010),
https://doi.org/10.1140/epjd/e2010-00060-5
[23] G. Junk and H. Svec, The mass spectra of the
α-amino
acids, J. Am. Chem. Soc.
85, 839 (1963),
https://doi.org/10.1021/ja00890a001
[24] Y. Hu and E.R. Bernstein, Vibrational and photoionization
spectroscopy of biomolecules: Aliphatic amino acid structures,
J. Chem. Phys.
128, 164311 (2008),
https://doi.org/10.1063/1.2902980
[25] P. Papp, P. Shchukin, J. Kočíšek, and Š. Matejčik, Electron
ionization and dissociation of aliphatic amino acids, J. Chem.
Phys.
137, 10510-1 (2012),
https://doi.org/10.1063/1.4749244
[26] A.F. Lago, L.H. Coutinho, R.R.T. Marinho, A. Naves de
Brito, and G.G.B. de Souza, Ionic dissociation of glycine,
alanine, valine and proline as induced by VUV (21.21 eV)
photons, Chem. Phys.
307, 9 (2004),
https://doi.org/10.1016/j.chemphys.2004.06.052