[PDF]    https://doi.org/10.3952/physics.v58i2.3744

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 149–158 (2018)


WIRELESS COMMUNICATIONS BEYOND 5G: UNCERTAINTIES OF TERAHERTZ WAVE ATTENUATION DUE TO RAIN
Milda Tamošiūnaitėa, Vincas Tamošiūnasa,b, and Gintaras Valušisa
aCenter for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
bInstitute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
E-mail: milda.tamosiunaite@ftmc.lt
Received 17 April 2018; revised 15 May 2018; accepted 21 June 2018

Statistical peculiarities of terahertz (THz) wave attenuation in heavy rain conditions are evaluated. The expected extreme densification of the infrastructure and the application of highly directional beams of 5th generation (5G) and beyond 5G (B5G) wireless networks were taken into account. Calculations were performed emulating both drop size distributions of the real rain and the laboratory-controlled rain described in literature. Simulation results revealed that absorbance fluctuations of more than one percent would occur if THz waves and raindrops interact within the 100 m3 volume. For much smaller volumes, short distances and narrow beams used for experiments with the laboratory-controlled rain, absorbance uncertainties could exceed the average absorbance value. A comparison of the simulation results at fixed average absorbance revealed that slightly lower uncertainties were expected in the case of a single raindrop size when compared to the Weibull distribution approximating the real rain. Nevertheless, in both cases the predicted deviations were substantially smaller than observed in the previously published experimental results. This fact predicts a new future application possibility for such laboratory-based experiments – they can be employed to predict the performance of wireless THz data transmission links when the resilience margin is required. Since much of the existing industrial test equipment is not designed to carry out calibrated over-the-air measurements of 5G/B5G wireless networks, such experiments can be employed to primarily predict the performance of data transmission links.
Keywords: terahertz, rain, attenuation, wireless communications, Mie scattering
PACS: 92.40.Ea, 84.40.Ua, 42.25.Fx

5G/B5G BEVIELIS RYŠYS: TERAHERCINIŲ BANGŲ SILPNINIMO DĖL LIETAUS NEAPIBRĖŽTUMAI
Milda Tamošiūnaitėa, Vincas Tamošiūnasa,b, Gintaras Valušisa

aVMTI Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
bVilniaus universitetas, Vilnius, Lietuva

Šiame darbe pritaikant statistinius metodus nagrinėjami terahercinių (THz) bangų silpninimo ypatumai stipraus lietaus sąlygomis. Modeliuojant buvo atsižvelgta į pagrindinius 5-os kartos (5G/B5G) bevielių tinklų veikimo principus: infrastruktūros tankėjimą ir signalo sklidimo kryptingumą. Skaičiavimai atlikti remiantis literatūroje aprašytais faktinio ir laboratorijoje kontroliuojamo lietaus lašų dydžio pasiskirstymais. Modeliavimo rezultatai parodė, kad THz bangai ir lietaus lašams sąveikaujant 100 m3 tūryje pasireikštų daugiau kaip 1 % sugerties svyravimai. Laboratorijoje kontroliuojamo lietaus atveju, esant trumpiems atstumams ir siauram spinduliui, šie svyravimai gali viršyti vidutinę sugerties vertę eile. Modeliavimo rezultatų palyginimas fiksuotos vidutinės sugerties atveju atskleidė, kad eksperimentuose su vienodo dydžio lašais yra tikėtini šiek tiek mažesni sugerties koeficiento nuokrypiai, palyginti su tikru lietumi, aprašomu Weibull’o funkcijos pasiskirstymu. Nepaisant to, abiem atvejais prognozuojami svyravimai buvo gerokai mažesni, nei buvo stebimi anksčiau skelbtuose eksperimentų rezultatuose. Tai patvirtina tokių eksperimentų taikymo galimybę. Kadangi dauguma pramonėje naudojamos įrangos nėra suprojektuota atlikti kalibruotus 5G/B5G belaidžių tinklų matavimus bangai sklindant oru, tokie eksperimentai gali būti naudojami siekiant prognozuoti tikėtiną duomenų perdavimo našumą.

References / Nuorodos

[1] Ericsson. Traffic Exploration Tool (2017),
https://www.ericsson.com/TET/trafficView/loadBasicEditor.ericsson
[2] C.E. Shannon, Communication in the presence of noise, Proc. IRE 37(1), 10 (1949),
https://doi.org/10.1109/JRPROC.1949.232969
[3] M. Koch, Terahertz communications: A 2020 vision, in: Terahertz Frequency Detection and Identification of Materials and Objects, eds. R.E. Miles, X.C. Zhang, H. Eisele, and A. Krotkus (Springer Netherlands, Dordrecht, 2007) pp. 325–338,
https://doi.org/10.1007/978-1-4020-6503-3_18
[4] J. Federici and L. Moeller, Review of terahertz and subterahertz wireless communications, J. Appl. Phys. 107(11), 111101 (2010),
https://doi.org/10.1063/1.3386413
[5] H.J. Song and T. Nagatsuma, Present and future of terahertz communications, IEEE Trans. Terahertz Sci. Technol. 1(1), 256 (2011),
https://doi.org/10.1109/TTHZ.2011.2159552
[6] I.F. Akyildiz, J.M. Jornet, and C. Han, Terahertz band: Next frontier for wireless communications, Phys. Commun. 12(Supplement C), 16 (2014),
https://doi.org/10.1016/j.phycom.2014.01.006
[7] T. Kürner and S. Priebe, Towards THz communications – status in research, standardization and regulation, J. Infrared Millim. Terahertz Waves 35(1), 53 (2014),
https://doi.org/10.1007/s10762-013-0014-3
[8] T. Nagatsuma, G. Ducournau, and C.C. Renaud, Advances in terahertz communications accelerated by photonics, Nat. Photonics 10(6), 371 (2016),
https://doi.org/10.1038/nphoton.2016.65
[9] D.M. Pozar, Microwave Engineering (John Wiley & Sons, New York, 2012),
https://www.amazon.co.uk/Microwave-Engineering-David-M-Pozar/dp/0470631554
[10] S. Han, C.-l. I, Z. Xu, and C. Rowell, Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G, IEEE Commun. Mag. 53(1), 186 (2015),
https://doi.org/10.1109/MCOM.2015.7010533
[11] R.W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A.M. Sayeed, An overview of signal processing techniques for millimeter wave MIMO systems, IEEE J. Sel. Topics Signal Process. 10(3), 436 (2016),
https://doi.org/10.1109/JSTSP.2016.2523924
[12] T. Nagatsuma, K. Oogimoto, Y. Inubushi, and J. Hirokawa, An overview of signal processing techniques for millimeter wave MIMO systems, Nano Commun. Netw. 10(Supplement C), 1(2016),
https://doi.org/10.1016/j.nancom.2016.07.005
[13] International Telecommunication Union, Recommendation ITU-R P.676-11: Attenuation by Atmospheric Gases (09/2016),
https://www.itu.int/rec/R-REC-P.676-11-201609-I
[14] International Telecommunication Union, Recommendation ITU-R P.838-3: Specific Attenuation Model for Rain for Use in Prediction Methods (03/2005),
https://www.itu.int/rec/R-RECP.838-3-200503-I
[15] M. Tamošiūnaitė, S. Tamošiūnas, M. Žilinskas, and M. Tamošiūnienė, Atmospheric attenuation due to humidity, in: Electromagnetic Waves, ed. V. Zhurbenko (InTech, Rijeka, 2011) pp. 157–172,
https://doi.org/10.5772/693
[16] M. Sekine, S. Ishii, S.I. Hwang, and S. Sayama, Weibull raindrop-size distribution and its application to rain attenuation from 30 GHz to 1 000 GHz, Int. J. Infrared Millimeter Waves 28(5), 383 (2007),
https://doi.org/10.1007/s10762-007-9221-0
[17] S. Ishii, M. Kinugawa, S. Wakiyama, S. Sayama, and T. Kamei, Rain attenuation in the microwave-to-terahertz waveband, Wireless Eng. Technol. 7(02), 59 (2016),
https://doi.org/10.4236/wet.2016.72006
[18] E. Villermaux and B. Bossa, Single-drop fragmentation determines size distribution of raindrops, Nat. Phys. 5(9), 697 (2009),
https://doi.org/10.1038/nphys1340
[19] E. Adirosi, L. Baldini, F. Lombardo, F. Russo, F. Napolitano, E. Volpi, and A. Tokay, Comparison of different fittings of drop spectra for rainfall retrievals, Adv. Water Resour. 83, 55 (2015),
https://doi.org/10.1016/j.advwatres.2015.05.009
[20] J. Ma, F. Vorrius, L. Lamb, L. Moeller, and J.F. Federici, Comparison of experimental and theoretical determined terahertz attenuation in controlled rain, J. Infrared Millim. Terahertz Waves 36(12), 1195 (2015),
https://doi.org/10.1007/s10762-015-0200-6
[21] H.C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, New York, 1957)
[22] P.S. Ray, Broadband complex refractive indices of ice and water, Appl. Opt. 11(8), 1836 (1972),
https://doi.org/10.1364/AO.11.001836
[23] C. Mätzler, MATLAB Functions for Mie Scattering and Absorption, Version 2, Research Report No. 2002-11 (Institute of Applied Physics, University of Bern, 2002),
http://www.iap.unibe.ch/publications/pub-detail.php?lang=en\&id=199
[24] S.F. Yunas, M. Valkama, and J. Niemelä, Spectral and energy efficiency of ultra-dense networks under different deployment strategies, IEEE Commun. Mag. 53(1), 90 (2015),
https://doi.org/10.1109/MCOM.2015.7010521