References
/
Nuorodos
[1] S. Witte and K. Eikema, Ultrafast optical parametric
chirped-pulse amplification, IEEE J. Sel. Top. Quantum Electron.
18, 296–307 (2012),
https://doi.org/10.1109/JSTQE.2011.2118370
[2] H. Fattahi, H.G. Barros, M. Gorjan, T. Nubbemeyer, B.
Alsaif, C.Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M.
Ueffing, et al., Third-generation femtosecond technology, Optica
1, 45–63 (2014),
https://doi.org/10.1364/OPTICA.1.000045
[3] F. Batysta, R. Antipenkov, J. Novák, J.T. Green, J.A.
Naylon, J. Horáček, M. Horáček, Z. Hubka, R. Boge, T. Mazanec,
B. Himmel, P. Bakule, and B. Rus, Broadband OPCPA system with 11
mJ output at 1 kHz, compressible to 12 fs, Opt. Express
24,
17843–17848 (2016),
https://doi.org/10.1364/OE.24.017843
[4] J. Liu, W. Wang, Z. Wang, Z. Lv, Z. Zhang, and Z. Wei,
Diode-pumped high energy and high average power all-solid-state
picosecond amplifier systems, Appl. Sci.
5, 1590–1602
(2015),
https://doi.org/10.3390/app5041590
[5] J. Adamonis, A. Aleknavičius, K. Michailovas, S. Balickas,
V. Petrauskienė, T. Gertus, and A. Michailovas, Implementation
of a SVWP-based laser beam shaping technique for generation of
100-mJ-level picosecond pulses, Appl. Opt.
55, 8007–8015
(2016),
https://doi.org/10.1364/AO.55.008007
[6] M.Y. Shverdin, F. Albert, S.G. Anderson, S.M. Betts, D.J.
Gibson, M.J. Messerly, F.V. Hartemann, C.W. Siders, and C.P.J.
Barty, Chirped-pulse amplification with narrowband pulses, Opt.
Lett.
35(14), 2478–2480 (2010),
https://doi.org/10.1364/OL.35.002478
[7] L. Veselis, R. Danilevičius, A. Zaukevičius, A. Michailovas,
and N. Rusteika, OPCPA pump source based on chirped second
harmonic pulse compression, in:
Proceedings of the 7th
EPS-QEOD Europhoton Conference on Solid State, Fibre, and
Waveguide Coherent Light Sources (European Physical
Society, 2016)
[8] K. Michailovas, V. Smilgevicius, A. Michailovas, and A.
Zaukevicius, Neodymium doped active medium based high power high
energy 10–20 ps pulse amplification system using chirped pulse
amplification technique, in:
Advanced Solid State Lasers,
OSA Technical Digest (online), paper ATh2A.27 (Optical Society
of America, 2014),
https://doi.org/10.1364/ASSL.2014.Ath2A.27
[9] K. Michailovas, A. Baltuska, A. Pugzlys, V. Smilgevicius, A.
Michailovas, A. Zaukevicius, R. Danilevicius, S. Frankinas, and
N. Rusteika, Combined Yb/Nd driver for optical parametric
chirped pulse amplifiers, Opt. Express
24, 22261–22271
(2016),
https://doi.org/10.1364/OE.24.022261
[10] L.M. Frantz and J.S. Nodvik, Theory of pulse propagation in
a laser amplifier, J. Appl. Phys.
34, 2346–2349 (1963),
https://doi.org/10.1063/1.1702744
[11] M.P. Kalashnikov, K. Osvay, I.M. Lachko, H. Schonnagel, and
W. Sandner, Broadband amplification of 800-nm pulses with a
combination of negatively and positively chirped pulse
amplification, IEEE J. Sel. Top. Quant. Electron.
12,
194–200 (2006),
https://doi.org/10.1109/JSTQE.2006.872730
[12] F. Giambruno, C. Radier, G. Rey, and G. Chériaux, Design of
a 10 PW (150 J/15 fs) peak power laser system with Ti:sapphire
medium through spectral control, Appl. Optics
50,
2617–2621 (2011),
https://doi.org/10.1364/AO.50.002617
[13] D. Schimpf, J. Limpert, and A. Tünnermann, Optimization of
high performance ultrafast fiber laser systems to >10 GW peak
power, J. Opt. Soc. Am. B
27, 2051–2060 (2010),
https://doi.org/10.1364/JOSAB.27.002051
[14] Y. Sato and T. Taira, Temperature dependencies of
stimulated emission cross section for Nd-doped solid-state laser
materials, Opt. Mater. Express
2, 1076–1087 (2012),
https://doi.org/10.1364/OME.2.001076
[15] W. Koechner,
Solid-State Laser Engineering
(Springer-Verlag New York, 2006),
https://www.springer.com/gp/book/9780387290942
[16] C. Bibeau, S.A. Payne, and H.T. Powell, Direct measurements
of the terminal laser level lifetime in neodymium-doped crystals
and glasses, J. Opt. Soc. Am. B
12, 1981–1992 (1995),
https://doi.org/10.1364/JOSAB.12.001981
[17] D. Auric and A. Labadens, On the use of a circulary
polarized beam to reduce the self-focussing effect in a glass
rod amplifier, Opt. Commun.
21, 241–242 (1977),
https://doi.org/10.1016/0030-4018(77)90272-3
[18] M.D. Perry, R.D. Boyd, J.A. Britten, D. Decker, B.W. Shore,
C. Shannon, and E. Shults, High-efficiency multilayer dielectric
diffraction gratings, Opt. Lett.
20, 940–942 (1996),
https://doi.org/10.1364/OL.20.000940
[19] ]B.W. Shore, M.D. Perry, J.A. Britten, R.D. Boyd, M.D.
Feit, H.T. Nguyen, R. Chow, G.E. Loomis, and L. Li, Design of
high-efficiency dielectric reflection gratings, J. Opt. Soc. Am.
A
14, 1124–1136 (1997),
https://doi.org/10.1364/JOSAA.14.001124
[20] K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L.
Wenke, R. Bödefeld, W. Theobald, E. Welsch, R. Sauerbrey, and H.
Heyer, High-efficiency dielectric reflection gratings: design,
fabrication, and analysis, Appl. Opt.
38, 6257–6271
(1999),
https://doi.org/10.1364/AO.38.006257
[21] F. Kong, Y. Jin, H. Huang, H. Zhang, S. Liu, and H. He,
Laser-induced damage of multilayer dielectric gratings with
picosecond laser pulses under vacuum and air, Opt. Laser
Technol.
73, 39–43 (2015),
https://doi.org/10.1016/j.optlastec.2015.03.011
[22] R. Paschotta,
The Encyclopedia of Laser Physics and
Technology, accessed: 09/08/2017,
https://www.rp-photonics.com/encyclopedia.html