[PDF]    https://doi.org/10.3952/physics.v58i2.3745

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 159–169 (2018)


SUB-20 ps HIGH ENERGY PULSES FROM 1 kHz NEODYMIUM-BASED CPA
Kirilas Michailovasa,b, Audrius Zaukevičiusa,c, Virginija Petrauskienėa, Valerijus Smilgevičiusb, Stanislovas Balickasa, and Andrejus Michailovasa,c
aEKSPLA, Savanorių 237, 02300 Vilnius, Lithuania
bVilnius University Laser Research Center, Saulėtekio 10, 10223 Vilnius, Lithuania
cInstitute of Physics, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
E-mail: k.michailovas@ekspla.com
Received 23 October 2017; accepted 21 June 2018

Chirped pulse amplification (CPA) technique was realized in Nd:YVO4 and Nd:YAG amplifiers. The front-end of the system consists of an Yb-doped fiber-optic master oscillator and a chirped fiber Bragg grating stretcher with a chain of Nd-based solid-state amplifiers followed by a grating compressor with custom high-dispersion multilayer dielectric gratings. This allowed us to implement a relatively compact and moderately complex master oscillator power amplifier (MOPA) layout. 85 mJ of sub-20 ps pulses at 1 kHz repetition rate was obtained at the output. The amplifier features favourable parameters for OPCPA pumping.
Keywords: chirped pulse amplification (CPA), neodymium amplifiers, picosecond pulse amplifier, Nd:YAG, Nd:YVO4, optical parametric chirped pulse amplification (OPCPA)
PACS: 42.55.Xi, 42.60.By, 42.60.Da, 42.65.Re

IKI 20 ps TRUKMĖS DIDELĖS ENERGIJOS IMPULSAI IŠ 1 kHz ČIRPUOTŲ IMPULSŲ STIPRINTUVO Nd JONAIS LEGIRUOTŲ AKTYVIŲJŲ TERPIŲ PAGRINDU
Kirilas Michailovasa,b, Audrius Zaukevičiusa,c, Virginija Petrauskienėa, Valerijus Smilgevičiusb, Stanislovas Balickasa, Andrejus Michailovasa,c

aEKSPLA, Vilnius, Lietuva
bVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
cFizinių ir technologijos mokslų centro Fizikos institutas, Vilnius, Lietuva

Naudojant čirpuotų impulsų stiprinimo (angl. CPA) metodą, sukurti Nd:YAG ir Nd:YVO4 stiprintuvai. Skaidulinis osciliatorius pagamintas Yb jonų legiruotos skaidulos pagrindu kartu su čirpuota skaiduline Bragg’o gardele, kuri kaip plėstuvas suformuodavo užkratą tolimesniam stiprinimui kieto kūno Nd jonais legiruotų stiprintuvų grandinėje. Sustiprinti impulsai buvo spaudžiami gardeliniame spaustuve, surinktame iš specialių didelės dispersijos daugiasluoksnių dielektrinių difrakcinių gardelių. Tai leido sukurti santykinai kompaktišką ir vidutinio sudėtingumo osciliatoriaus-stiprintuvo sistemą, kurios išėjime mes gavome 85 mJ energijos ir mažesnės nei 20 ps trukmės impulsus 1 kHz pasikartojimo dažniu. Šie stiprinimo sistemos parametrai yra itin tinkami optinio parametrinio čirpuotų impulsų stiprintuvo (angl. OPCPA) kaupinimui.

References / Nuorodos

[1] S. Witte and K. Eikema, Ultrafast optical parametric chirped-pulse amplification, IEEE J. Sel. Top. Quantum Electron. 18, 296–307 (2012),
https://doi.org/10.1109/JSTQE.2011.2118370
[2] H. Fattahi, H.G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C.Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, et al., Third-generation femtosecond technology, Optica 1, 45–63 (2014),
https://doi.org/10.1364/OPTICA.1.000045
[3] F. Batysta, R. Antipenkov, J. Novák, J.T. Green, J.A. Naylon, J. Horáček, M. Horáček, Z. Hubka, R. Boge, T. Mazanec, B. Himmel, P. Bakule, and B. Rus, Broadband OPCPA system with 11 mJ output at 1 kHz, compressible to 12 fs, Opt. Express 24, 17843–17848 (2016),
https://doi.org/10.1364/OE.24.017843
[4] J. Liu, W. Wang, Z. Wang, Z. Lv, Z. Zhang, and Z. Wei, Diode-pumped high energy and high average power all-solid-state picosecond amplifier systems, Appl. Sci. 5, 1590–1602 (2015),
https://doi.org/10.3390/app5041590
[5] J. Adamonis, A. Aleknavičius, K. Michailovas, S. Balickas, V. Petrauskienė, T. Gertus, and A. Michailovas, Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses, Appl. Opt. 55, 8007–8015 (2016),
https://doi.org/10.1364/AO.55.008007
[6] M.Y. Shverdin, F. Albert, S.G. Anderson, S.M. Betts, D.J. Gibson, M.J. Messerly, F.V. Hartemann, C.W. Siders, and C.P.J. Barty, Chirped-pulse amplification with narrowband pulses, Opt. Lett. 35(14), 2478–2480 (2010),
https://doi.org/10.1364/OL.35.002478
[7] L. Veselis, R. Danilevičius, A. Zaukevičius, A. Michailovas, and N. Rusteika, OPCPA pump source based on chirped second harmonic pulse compression, in: Proceedings of the 7th EPS-QEOD Europhoton Conference on Solid State, Fibre, and Waveguide Coherent Light Sources (European Physical Society, 2016)
[8] K. Michailovas, V. Smilgevicius, A. Michailovas, and A. Zaukevicius, Neodymium doped active medium based high power high energy 10–20 ps pulse amplification system using chirped pulse amplification technique, in: Advanced Solid State Lasers, OSA Technical Digest (online), paper ATh2A.27 (Optical Society of America, 2014),
https://doi.org/10.1364/ASSL.2014.Ath2A.27
[9] K. Michailovas, A. Baltuska, A. Pugzlys, V. Smilgevicius, A. Michailovas, A. Zaukevicius, R. Danilevicius, S. Frankinas, and N. Rusteika, Combined Yb/Nd driver for optical parametric chirped pulse amplifiers, Opt. Express 24, 22261–22271 (2016),
https://doi.org/10.1364/OE.24.022261
[10] L.M. Frantz and J.S. Nodvik, Theory of pulse propagation in a laser amplifier, J. Appl. Phys. 34, 2346–2349 (1963),
https://doi.org/10.1063/1.1702744
[11] M.P. Kalashnikov, K. Osvay, I.M. Lachko, H. Schonnagel, and W. Sandner, Broadband amplification of 800-nm pulses with a combination of negatively and positively chirped pulse amplification, IEEE J. Sel. Top. Quant. Electron. 12, 194–200 (2006),
https://doi.org/10.1109/JSTQE.2006.872730
[12] F. Giambruno, C. Radier, G. Rey, and G. Chériaux, Design of a 10 PW (150 J/15 fs) peak power laser system with Ti:sapphire medium through spectral control, Appl. Optics 50, 2617–2621 (2011),
https://doi.org/10.1364/AO.50.002617
[13] D. Schimpf, J. Limpert, and A. Tünnermann, Optimization of high performance ultrafast fiber laser systems to >10 GW peak power, J. Opt. Soc. Am. B 27, 2051–2060 (2010),
https://doi.org/10.1364/JOSAB.27.002051
[14] Y. Sato and T. Taira, Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials, Opt. Mater. Express 2, 1076–1087 (2012),
https://doi.org/10.1364/OME.2.001076
[15] W. Koechner, Solid-State Laser Engineering (Springer-Verlag New York, 2006),
https://www.springer.com/gp/book/9780387290942
[16] C. Bibeau, S.A. Payne, and H.T. Powell, Direct measurements of the terminal laser level lifetime in neodymium-doped crystals and glasses, J. Opt. Soc. Am. B 12, 1981–1992 (1995),
https://doi.org/10.1364/JOSAB.12.001981
[17] D. Auric and A. Labadens, On the use of a circulary polarized beam to reduce the self-focussing effect in a glass rod amplifier, Opt. Commun. 21, 241–242 (1977),
https://doi.org/10.1016/0030-4018(77)90272-3
[18] M.D. Perry, R.D. Boyd, J.A. Britten, D. Decker, B.W. Shore, C. Shannon, and E. Shults, High-efficiency multilayer dielectric diffraction gratings, Opt. Lett. 20, 940–942 (1996),
https://doi.org/10.1364/OL.20.000940
[19] ]B.W. Shore, M.D. Perry, J.A. Britten, R.D. Boyd, M.D. Feit, H.T. Nguyen, R. Chow, G.E. Loomis, and L. Li, Design of high-efficiency dielectric reflection gratings, J. Opt. Soc. Am. A 14, 1124–1136 (1997),
https://doi.org/10.1364/JOSAA.14.001124
[20] K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bödefeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, High-efficiency dielectric reflection gratings: design, fabrication, and analysis, Appl. Opt. 38, 6257–6271 (1999),
https://doi.org/10.1364/AO.38.006257
[21] F. Kong, Y. Jin, H. Huang, H. Zhang, S. Liu, and H. He, Laser-induced damage of multilayer dielectric gratings with picosecond laser pulses under vacuum and air, Opt. Laser Technol. 73, 39–43 (2015),
https://doi.org/10.1016/j.optlastec.2015.03.011
[22] R. Paschotta, The Encyclopedia of Laser Physics and Technology, accessed: 09/08/2017,
https://www.rp-photonics.com/encyclopedia.html