[PDF]    https://doi.org/10.3952/physics.v58i2.3746

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 170–176 (2018)


AN ACCURATE ANALYTICAL MODEL FOR NONEQUILIBRIUM DRIFT-VELOCITY AND CHORD-MOBILITY OF In0.53Ga0.47As
Enrique Morenoa and Luca Varanib
aAstro-Photonics Lab, Department of Electrical Engineering at the Beauchef Campus, University of Chile, Av. Tupper 2007, 8370471 Santiago de Chile, Chile
bInstitute of Electronics and Systems, University of Montpellier, Bâtiment 5, 860 rue de St Priest, 34090 Montpellier, France
E-mail: enrique@moreno.ws; luca.varani@umontpellier.fr
Received 27 October 2017; revised 17 November 2017; accepted 21 June 2018

Mobility models are an essential tool for an accurate description of the charge carrier dynamics in semiconductor materials and devices. By means of a simulator based on the Monte Carlo method which has been properly validated, a set of velocity and chord-mobility data was generated for electrons and holes in In0.53Ga0.47As bulk material as a function of electric field and for different concentrations of donors and acceptors. This set has been used to build an accurate velocity and chord-mobility analytical model, the mathematical simplicity of which represents a significant advantage because it provides necessary values by a rapid calculation process without forgoing accuracy. The model can be easily implemented in compact numerical simulations of electronic devices and associated circuits where a fast recovery of the velocity and mobility values corresponding to the local electric field and doping concentration is needed.
Keywords: InGaAs, mobility model, charge carrier mobility, drift-diffusion, semiconductor, Monte Carlo methods, transport, carrier velocity
PACS: 72.20.Fr, 72.80.Ey

TIKSLUS ANALIZINIS NEPUSIAUSVYRINIO DREIFO GREIČIO IR CHORDINIO JUDRIO In0,53Ga0,47As MODELIS
Enrique Morenoa, Luca Varanib

aČilės universitetas, Santjagas, Čilė
bMonpeljė universitetas, Monpeljė, Prancūzija


References / Nuorodos

[1] Atlas,
https://www.silvaco.com/
[2] Comsol Multiphysics,
https://www.comsol.com/
[3] S. Karishy, P. Ziadé, G. Sabatini, H. Marinchio, C. Palermo, L. Varani, J. Mateos, and T. Gonzalez, Review of electron transport properties in bulk InGaAs and InAs at room temperature, Lith. J. Phys. 55(4), 305–314 (2015),
https://doi.org/10.3952/physics.v55i4.3228
[4] D.M. Caughey and R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field, IEEE Proc. 55(12), 2192–2193 (1967),
https://doi.org/10.1109/PROC.1967.6123
[5] C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, A physically based mobility model for numerical simulation of nonplanar devices, IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 7(11), 1164–1171 (1988).
https://doi.org/10.1109/43.9186
[6] E. Moreno, M. Pantoja, F. Ruiz, J. Roldń, and S. García, On the numerical modeling of terahertz photoconductive antennas, J. Infrared Millim. Terahertz Waves 35(5), 432–444 (2014).
https://doi.org/10.1007/s10762-014-0060-5
[7] E. Moreno, M. Pantoja, S. Garcia, A. Bretones, and R. Martin, Time-domain numerical modeling of THz photoconductive antennas, IEEE Trans. Terahertz Sci. Technol. 4(4), 490–500 (2014).
https://doi.org/10.1109/TTHZ.2014.2327385
[8] E. Moreno, Z. Hemmat, J.B. Roldán, M.F. Pantoja, A.R. Bretones, and S.G. García, Time-domain numerical modeling of terahertz receivers based on photoconductive antennas, J. Opt. Soc. Am. B 32(10), 2034–2041 (2015).
https://doi.org/10.1364/JOSAB.32.002034
[9] E. Moreno, Z. Hemmat, J.B. Roldán, M.F. Pantoja, A.R. Bretones, S.G. García, and R. Faez, Implementation of open boundary problems in photo-conductive antennas by using convolutional perfectly matched layers, IEEE Trans. Antennas Propag. 64(11), 4919–4922 (2016).
https://doi.org/10.1109/TAP.2016.2602357
[10] T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, Uni-traveling-carrier photodiodes for terahertz applications, IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
https://doi.org/10.1109/JSTQE.2014.2336537
[11] Q. Chen, Y. Huang, X. Duan, F. Liu, C. Kang, Q. Wang, J. Wang, X. Zhang, and X. Ren, High-speed uni-traveling-carrier photodetector with the new design of absorber and collector, in: Proceedings of the 2015 Opto-Electronics and Communications Conference (OECC) (2015),
https://doi.org/10.1109/OECC.2015.7340268
[12] F. Liu, Y. Huang, C. Kang, Q. Chen, X. Duan, and X. Ren, High speed and high responsivity dual-absorption InGaAs/InP UTC-PDs, in: Proceedings of the 2015 Opto-Electronics and Communications Conference (OECC) (2015),
https://doi.org/10.1109/OECC.2015.7340304
[13] X. Zhao, C. Heidelberger, E.A. Fitzgerald, and J.A. del Alamo, Source/drain asymmetry in InGaAs vertical nanowire MOSFETs, IEEE Trans. Electron Dev. 64(5), 2161–2165 (2017).
https://doi.org/10.1109/TED.2017.2684707
[14] I.M. Sobol, The Monte Carlo Method, Little Mathematics Library (Mir Publishers, Moscow, 1975),
https://archive.org/details/TheMonte-carloMethodlittleMathematicsLibrary
[15] C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys. 55, 645–705 (1983).
https://doi.org/10.1103/RevModPhys.55.645
[16] M.V. Fischetti, Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport, IEEE Trans. Electron Dev. 38(3), 634–649 (1991).
https://doi.org/10.1109/16.75176
[17] J. Mateos, T. Gonzalez, D. Pardo, V. Hoel, H. Happy, and A. Cappy, Improved Monte Carlo algorithm for the simulation of δ-doped AlInAs/GaInAs HEMTs, IEEE Trans. Electron Dev. 47(1), 250–253 (2000).
https://doi.org/10.1109/16.817592
[18] K.F. Brennan and D.H. Park, Theoretical comparison of electron real space transfer in classical and quantum two-dimensional heterostructure systems, J. Appl. Phys. 65(3), 1156–1163 (1989).
https://doi.org/10.1063/1.343055
[19] S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley Online Library, 2005),
https://doi.org/10.1002/352760281X
[20] O. Madelung, Semiconductors: Data Handbook (Springer, Berlin, 2003),
https://www.springer.com/gp/book/9783540404880
[21] K. Aoki, Nonlinear Dynamics and Chaos in Semiconductors (CRC Press, 2000),
https://doi.org/10.1201/9781420033847
[22] G.M. Dunn, G.J. Rees, J.P.R. David, S.A. Plimmer, and D.C. Herbert, Monte Carlo simulation of impact ionization and current multiplication in short GaAs p+in+ diodes, Semicond. Sci. Technol. 12(1), 111 (1997),
https://doi.org/10.1088/0268-1242/12/1/019
[23] G.M. Dunn, A. Phillips, and P.J. Topham, Current instability in power HEMTs, Semicond. Sci. Technol. 16(7), 562 (2001),
https://doi.org/10.1088/0268-1242/16/7/306
[24] B.G. Vasallo, J. Mateos, D. Pardo, and T. González, Influence of trapping–detrapping processes on shot noise in nondegenerate quasi-ballistic transport, Semicond. Sci. Technol. 17(5), 440 (2002),
https://doi.org/10.1088/0268-1242/17/5/306
[25] K. Kalna and A. Asenov, Gate tunnelling and impact ionisation in sub 100 nm PHEMTs, IEICE Trans. Electron. E86-C(3) 330–335 (2003),
https://doi.org/10.1109/SISPAD.2002.1034536
[26] T.P. Pearsall, Impact ionization rates for electrons and holes in Ga0.47In0.53As, Appl. Phys. Lett. 36(3), 218–220 (1980),
https://doi.org/10.1063/1.91431
[27] J. Bude and K. Hess, Thresholds of impact ionization in semiconductors, J. Appl. Phys. 72(8), 3554–3561 (1992),
https://doi.org/10.1063/1.351434
[28] T.H. Windhorn, L.W. Cook, and G.E. Stillman, The electron velocity field characteristic for n-In0.53Ga0.47As at 300 K, IEEE Electron Dev. Lett. 3(1), 18–20 (1982),
https://doi.org/10.1109/EDL.1982.25459
[29] J.L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R. Fauquembergue, Electron transport properties of strained InxGa1–xAs, Appl. Phys. Lett. 56(4), 346–348 (1990),
https://doi.org/10.1063/1.102780
[30] Y. Hori, Y. Ando, Y. Miyamoto, and O. Sugino, Effect of strain on band structure and electron transport in InAs, Solid State Electron. 43(9), 1813–1816 (1999),
https://doi.org/10.1016/S0038-1101(99)00126-4
[31] J.H. Marsh, Effects of compositional clustering on electron transport in In0.53Ga0.47As, Appl. Phys. Lett. 41(8), 732–734 (1982),
https://doi.org/10.1063/1.93658
[32] M.A. Haase, V.M. Robbins, N. Tabatabaie, and G.E. Stillman, Subthreshold electron velocity-field characteristics of GaAs and In0.53Ga0.47As, J. Appl. Phys. 57(6), 2295–2298 (1985),
https://doi.org/10.1063/1.335464
[33] M. Littlejohn, K. Kim, and H. Tian, in: Properties of Lattice-Matched and Strained Indium Gallium Arsenide, ed. P. Bhattacharya (INSPEC, London, U. K., 1993),
https://www.amazon.co.uk/Properties-Lattice-matched-Strained-Arsenide-Datareviews/dp/0852968655/
[34] W.K. Ng, C.H. Tan, J.P.R. David, P.A. Houston, M. Yee, and J.S. Ng, Temperature dependent low-field electron multiplication in In0.53Ga0.47As, Appl. Phys. Lett. 83(14), 2820–2822 (2003),
https://doi.org/10.1063/1.1615684
[35] C.H. Tan, G.J. Rees, P.A. Houston, J.S. Ng, W.K. Ng, and J.P.R. David, Temperature dependence of electron impact ionization in In0.53Ga0.47As, Appl. Phys. Lett., 84(13), 2322–2324 (2004),
https://doi.org/10.1063/1.1691192
[36] G. Satyanadh, R.P. Joshi, N. Abedin, and U. Singh, Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs, J. Appl. Phys. 91(3), 1331–1338 (2002),
https://doi.org/10.1063/1.1429771
[37] M. Isler, Phonon-assisted impact ionization of electrons in In0.53Ga0.47As, Phys. Rev. B 63, 115209 (2001),
https://doi.org/10.1103/PhysRevB.63.115209
[38] V. Balynas, A. Krotkus, A. Stalnionis, A.T. Gorelionok, N.M. Shmidt, and J.A. Tellefsen, Time-resolved, hot-electron conductivity measurement using an electro-optic sampling technique, Appl. Phys. A 51(4), 357–360 (1990),
https://doi.org/10.1007/BF00324321
[39] L. Amer, C. Sayah, B. Bouazza, A. Guen-Bouazza, N. Chabane-Sari, and C. Gontrand, Analyse du phénomène de transport électronique dans l'InAs et le GaAs par la méthode de Monte Carlo pour la conception d'un transistor PHEMT, in: CISTEMA'2003 (Université de Tlemcen),
http://dspace.univ-tlemcen.dz/handle/112/869
[40] J. Jogi, S. Sen, M. Gupta, and R. Gupta, An analytical 2D model for drain-induced barrier lowering in subquarter micrometer gate length InAlAs/InGaAs/InAlAs/InP LMHEMT, Microelectronics J. 33(8), 633–638 (2002),
https://doi.org/10.1016/S0026-2692(02)00033-2
[41] Y. Huang, J. Xu, L. Wang, and S. Zhu, A physical model on electron mobility in InGaAs nMOSFETs with stacked gate dielectric, Microelectron. Reliab. 55(2), 342–346 (2015),
https://doi.org/10.1016/j.microrel.2014.10.011
[42] G.B. Beneventi, S. Reggiani, A. Gnudi, E. Gnani, A. Alian, N. Collaert, A. Mocuta, A. Thean, and G. Baccarani, A TCAD low-field electron mobility model for thin-body InGaAs on InP MOSFETs calibrated on experimental characteristics, IEEE Trans. Electron Dev. 62(11), 3645–3652 (2015),
https://doi.org/10.1109/TED.2015.2478847