Received 27 October 2017; revised 17 November 2017; accepted 21
June 2018
References
/
Nuorodos
[1] Atlas,
https://www.silvaco.com/
[2] Comsol Multiphysics,
https://www.comsol.com/
[3] S. Karishy, P. Ziadé, G. Sabatini, H. Marinchio, C. Palermo,
L. Varani, J. Mateos, and T. Gonzalez, Review of electron
transport properties in bulk InGaAs and InAs at room
temperature, Lith. J. Phys.
55(4), 305–314 (2015),
https://doi.org/10.3952/physics.v55i4.3228
[4] D.M. Caughey and R.E. Thomas, Carrier mobilities in silicon
empirically related to doping and field, IEEE Proc.
55(12),
2192–2193 (1967),
https://doi.org/10.1109/PROC.1967.6123
[5] C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, A
physically based mobility model for numerical simulation of
nonplanar devices, IEEE Trans. Comput. Aided Design Integr.
Circuits Syst.
7(11), 1164–1171 (1988).
https://doi.org/10.1109/43.9186
[6] E. Moreno, M. Pantoja, F. Ruiz, J. Roldń, and S. García, On
the numerical modeling of terahertz photoconductive antennas, J.
Infrared Millim. Terahertz Waves
35(5), 432–444 (2014).
https://doi.org/10.1007/s10762-014-0060-5
[7] E. Moreno, M. Pantoja, S. Garcia, A. Bretones, and R.
Martin, Time-domain numerical modeling of THz photoconductive
antennas, IEEE Trans. Terahertz Sci. Technol.
4(4),
490–500 (2014).
https://doi.org/10.1109/TTHZ.2014.2327385
[8] E. Moreno, Z. Hemmat, J.B. Roldán, M.F. Pantoja, A.R.
Bretones, and S.G. García, Time-domain numerical modeling of
terahertz receivers based on photoconductive antennas, J. Opt.
Soc. Am. B
32(10), 2034–2041 (2015).
https://doi.org/10.1364/JOSAB.32.002034
[9] E. Moreno, Z. Hemmat, J.B. Roldán, M.F. Pantoja, A.R.
Bretones, S.G. García, and R. Faez, Implementation of open
boundary problems in photo-conductive antennas by using
convolutional perfectly matched layers, IEEE Trans. Antennas
Propag.
64(11), 4919–4922 (2016).
https://doi.org/10.1109/TAP.2016.2602357
[10] T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito,
Uni-traveling-carrier photodiodes for terahertz applications,
IEEE J. Sel. Top. Quantum Electron.
20(6), 79–88 (2014).
https://doi.org/10.1109/JSTQE.2014.2336537
[11] Q. Chen, Y. Huang, X. Duan, F. Liu, C. Kang, Q. Wang, J.
Wang, X. Zhang, and X. Ren, High-speed uni-traveling-carrier
photodetector with the new design of absorber and collector, in:
Proceedings of the 2015 Opto-Electronics and Communications
Conference (OECC) (2015),
https://doi.org/10.1109/OECC.2015.7340268
[12] F. Liu, Y. Huang, C. Kang, Q. Chen, X. Duan, and X. Ren,
High speed and high responsivity dual-absorption InGaAs/InP
UTC-PDs, in:
Proceedings of the 2015 Opto-Electronics and
Communications Conference (OECC) (2015),
https://doi.org/10.1109/OECC.2015.7340304
[13] X. Zhao, C. Heidelberger, E.A. Fitzgerald, and J.A. del
Alamo, Source/drain asymmetry in InGaAs vertical nanowire
MOSFETs, IEEE Trans. Electron Dev.
64(5), 2161–2165
(2017).
https://doi.org/10.1109/TED.2017.2684707
[14] I.M. Sobol,
The Monte Carlo Method, Little
Mathematics Library (Mir Publishers, Moscow, 1975),
https://archive.org/details/TheMonte-carloMethodlittleMathematicsLibrary
[15] C. Jacoboni and L. Reggiani, The Monte Carlo method for the
solution of charge transport in semiconductors with applications
to covalent materials, Rev. Mod. Phys.
55, 645–705
(1983).
https://doi.org/10.1103/RevModPhys.55.645
[16] M.V. Fischetti, Monte Carlo simulation of transport in
technologically significant semiconductors of the diamond and
zinc-blende structures. I. Homogeneous transport, IEEE Trans.
Electron Dev.
38(3), 634–649 (1991).
https://doi.org/10.1109/16.75176
[17] J. Mateos, T. Gonzalez, D. Pardo, V. Hoel, H. Happy, and A.
Cappy, Improved Monte Carlo algorithm for the simulation of
δ-doped AlInAs/GaInAs HEMTs, IEEE Trans. Electron Dev.
47(1),
250–253 (2000).
https://doi.org/10.1109/16.817592
[18] K.F. Brennan and D.H. Park, Theoretical comparison of
electron real space transfer in classical and quantum
two-dimensional heterostructure systems, J. Appl. Phys.
65(3),
1156–1163 (1989).
https://doi.org/10.1063/1.343055
[19] S. Adachi,
Physical Properties of III–V Semiconductor
Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP
(Wiley Online Library, 2005),
https://doi.org/10.1002/352760281X
[20] O. Madelung,
Semiconductors: Data Handbook
(Springer, Berlin, 2003),
https://www.springer.com/gp/book/9783540404880
[21] K. Aoki,
Nonlinear Dynamics and Chaos in Semiconductors
(CRC Press, 2000),
https://doi.org/10.1201/9781420033847
[22] G.M. Dunn, G.J. Rees, J.P.R. David, S.A. Plimmer, and D.C.
Herbert, Monte Carlo simulation of impact ionization and current
multiplication in short GaAs p
+in
+ diodes,
Semicond. Sci. Technol.
12(1), 111 (1997),
https://doi.org/10.1088/0268-1242/12/1/019
[23] G.M. Dunn, A. Phillips, and P.J. Topham, Current
instability in power HEMTs, Semicond. Sci. Technol.
16(7),
562 (2001),
https://doi.org/10.1088/0268-1242/16/7/306
[24] B.G. Vasallo, J. Mateos, D. Pardo, and T. González,
Influence of trapping–detrapping processes on shot noise in
nondegenerate quasi-ballistic transport, Semicond. Sci. Technol.
17(5), 440 (2002),
https://doi.org/10.1088/0268-1242/17/5/306
[25] K. Kalna and A. Asenov, Gate tunnelling and impact
ionisation in sub 100 nm PHEMTs, IEICE Trans. Electron.
E86-C(3)
330–335 (2003),
https://doi.org/10.1109/SISPAD.2002.1034536
[26] T.P. Pearsall, Impact ionization rates for electrons and
holes in Ga
0.47In
0.53As, Appl. Phys. Lett.
36(3), 218–220 (1980),
https://doi.org/10.1063/1.91431
[27] J. Bude and K. Hess, Thresholds of impact ionization in
semiconductors, J. Appl. Phys.
72(8), 3554–3561 (1992),
https://doi.org/10.1063/1.351434
[28] T.H. Windhorn, L.W. Cook, and G.E. Stillman, The electron
velocity field characteristic for n-In
0.53Ga
0.47As
at 300 K, IEEE Electron Dev. Lett.
3(1), 18–20 (1982),
https://doi.org/10.1109/EDL.1982.25459
[29] J.L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R.
Fauquembergue, Electron transport properties of strained In
xGa
1–xAs,
Appl. Phys. Lett.
56(4), 346–348 (1990),
https://doi.org/10.1063/1.102780
[30] Y. Hori, Y. Ando, Y. Miyamoto, and O. Sugino, Effect of
strain on band structure and electron transport in InAs, Solid
State Electron.
43(9), 1813–1816 (1999),
https://doi.org/10.1016/S0038-1101(99)00126-4
[31] J.H. Marsh, Effects of compositional clustering on electron
transport in In
0.53Ga
0.47As, Appl. Phys.
Lett.
41(8), 732–734 (1982),
https://doi.org/10.1063/1.93658
[32] M.A. Haase, V.M. Robbins, N. Tabatabaie, and G.E. Stillman,
Subthreshold electron velocity-field characteristics of GaAs and
In
0.53Ga
0.47As, J. Appl. Phys.
57(6),
2295–2298 (1985),
https://doi.org/10.1063/1.335464
[33] M. Littlejohn, K. Kim, and H. Tian, in:
Properties of
Lattice-Matched and Strained Indium Gallium Arsenide, ed.
P. Bhattacharya (INSPEC, London, U. K., 1993),
https://www.amazon.co.uk/Properties-Lattice-matched-Strained-Arsenide-Datareviews/dp/0852968655/
[34] W.K. Ng, C.H. Tan, J.P.R. David, P.A. Houston, M. Yee, and
J.S. Ng, Temperature dependent low-field electron multiplication
in In
0.53Ga
0.47As, Appl. Phys. Lett.
83(14),
2820–2822 (2003),
https://doi.org/10.1063/1.1615684
[35] C.H. Tan, G.J. Rees, P.A. Houston, J.S. Ng, W.K. Ng, and
J.P.R. David, Temperature dependence of electron impact
ionization in In
0.53Ga
0.47As, Appl. Phys.
Lett.,
84(13), 2322–2324 (2004),
https://doi.org/10.1063/1.1691192
[36] G. Satyanadh, R.P. Joshi, N. Abedin, and U. Singh, Monte
Carlo calculation of electron drift characteristics and
avalanche noise in bulk InAs, J. Appl. Phys.
91(3),
1331–1338 (2002),
https://doi.org/10.1063/1.1429771
[37] M. Isler, Phonon-assisted impact ionization of electrons in
In
0.53Ga
0.47As, Phys. Rev. B
63,
115209 (2001),
https://doi.org/10.1103/PhysRevB.63.115209
[38] V. Balynas, A. Krotkus, A. Stalnionis, A.T. Gorelionok,
N.M. Shmidt, and J.A. Tellefsen, Time-resolved, hot-electron
conductivity measurement using an electro-optic sampling
technique, Appl. Phys. A
51(4), 357–360 (1990),
https://doi.org/10.1007/BF00324321
[39] L. Amer, C. Sayah, B. Bouazza, A. Guen-Bouazza, N.
Chabane-Sari, and C. Gontrand, Analyse du phénomène de transport
électronique dans l'InAs et le GaAs par la méthode de Monte
Carlo pour la conception d'un transistor PHEMT, in:
CISTEMA'2003
(Université de Tlemcen),
http://dspace.univ-tlemcen.dz/handle/112/869
[40] J. Jogi, S. Sen, M. Gupta, and R. Gupta, An analytical 2D
model for drain-induced barrier lowering in subquarter
micrometer gate length InAlAs/InGaAs/InAlAs/InP LMHEMT,
Microelectronics J.
33(8), 633–638 (2002),
https://doi.org/10.1016/S0026-2692(02)00033-2
[41] Y. Huang, J. Xu, L. Wang, and S. Zhu, A physical model on
electron mobility in InGaAs nMOSFETs with stacked gate
dielectric, Microelectron. Reliab.
55(2), 342–346
(2015),
https://doi.org/10.1016/j.microrel.2014.10.011
[42] G.B. Beneventi, S. Reggiani, A. Gnudi, E. Gnani, A. Alian,
N. Collaert, A. Mocuta, A. Thean, and G. Baccarani, A TCAD
low-field electron mobility model for thin-body InGaAs on InP
MOSFETs calibrated on experimental characteristics, IEEE Trans.
Electron Dev.
62(11), 3645–3652 (2015),
https://doi.org/10.1109/TED.2015.2478847