[PDF]    https://doi.org/10.3952/physics.v58i2.3747

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 177–187 (2018)


SIMULATION OF DYNAMIC CHARACTERISTICS OF GaN p-i-n AVALANCHE DIODE OPERATING AS PARTICLE DETECTOR WITH INTERNAL GAIN
Juozas Vyšniauskasa and Eugenijus Gaubasb
aInstitute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
bInstitute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
E-mail: juozas.vysniauskas@ff.vu.lt; eugenijus.gaubas@ff.vu.lt
Received 8 December 2017; revised 15 January 2018; accepted 21 June 2018

An evolution of the transient characteristics of the GaN p-i-n diodes, operating in the avalanche mode and acting as particle sensors, has been simulated by using the Synopsys TCAD Sentaurus software package and the drift-diffusion approach. Profiling of the charge generation, recombination and drift-diffusion processes has been performed over a nanosecond time-scale with a precision of a few picoseconds and emulated through the photo-excitation of an excess carrier domain at different locations of the active volume of a diode. Shockley–Read–Hall (SRH), Auger and radiative recombination processes have been taken into account. Fast and slow components within a current transient have been analysed based on the consideration of the carrier spatial distribution at different instants of the avalanche process. The internal gain due to charge multiplication ensures the sufficient charge collection on electrodes of the relatively thin (5 μm) diode operating in the avalanche mode. It has been shown that the simulated evolution of the detector transient responses by employing the drift-diffusion approach reproduces properly the qualitative modifications of the main features of a detector with an internal gain, realized by induction of the avalanche processes governed by the applied external voltage.
Keywords: GaN, simulation, p-i-n diodes, impact ionization, particle detectors, TCAD
PACS: 85.30.Mn

GaN GRIŪTINIO p-i-n STRUKTŪROS DALELIŲ DETEKTORIAUS SU VIDINIU STIPRINIMU DINAMINIŲ CHARAKTERISTIKŲ MODELIAVIMAS
Juozas Vyšniauskasa, Eugenijus Gaubasb

aVilniaus universiteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva
bVilniaus universiteto Fotonikos ir nanotechnologijų institutas, Vilnius, Lietuva

Galio nitrido p-i-n griūtinio diodo dinaminės charakteristikos buvo sumodeliuotos, pasitelkiant dreifinį-difuzinį modelį iš Synopsys TCAD Sentaurus programų paketo. Tokių spinduliuotės jutiklių srovės signalų kitimų profiliavimas įgyvendintas emuliuojant spinduliuotės poveikį antrinių krūvininkų porų injekcija įvairiose diodo aktyviosios srities vietose, pasitelkiant optinio sužadinimo trumpais impulsais parametrus, artimus eksperimentinėms situacijoms. Parodyta, kad difuzijos-dreifo artinys yra tinkamas GaN p-i-n detektorių charakteristikų kaitos sumodeliavimui ir radiacinės jutiklių degradacijos kompensavimui, pasitelkiant valdomą išorine įtampa griūtinį diodo režimą. Dėl krūvininkų dauginimosi vidinis stiprinimas užtikrina pakankamą krūvio surinkimą gana plonuose (5 mikrometrai) dalelių jutikliuose.

References / Nuorodos

[1] Y.-A. Chen, C.-H. Kuo, L.-C. Chang, and J.-P. Wu, Pulsed growth epitaxial method of GaN-based light-emitting diodes on patterned SiO2 AlN/Sapphire template, IEEE J. Quantum Electron. 50(10), 854–859 (2014),
https://doi.org/10.1109/JQE.2014.2353932
[2] C.H. Kuo, Y.A. Chen, J.P. Wu, and L.C. Chang, Efficiency improvement of near-ultraviolet nitride-based light-emitting-diode prepared on GaN nano-rod arrays by metalorganic chemical vapor deposition, IEEE J. Quantum Electron. 50(3), 129–131 (2014),
https://doi.org/10.1109/JQE.2013.2297413
[3] T. Frost, A. Banerjee, K. Sun, S.L. Chuang, and P. Bhattacharya, InGaN/GaN quantum dot red (λ = 630 nm) laser, IEEE J. Quantum Electron. 49(11), 923–931 (2013),
https://doi.org/10.1109/JQE.2013.2281062
[4] M.M. Satter, Z. Lochner, T.-T. Kao, Y.-S. Liu, X.-H. Li, S.-C. Shen, R.D. Dupuis, and P.D. Yoder, AlGaN-based vertical injection laser diodes using inverse tapered p-waveguide for efficient hole transport, IEEE J. Quantum Electron. 50(3), 166–173 (2014),
https://doi.org/10.1109/JQE.2014.2300757
[5] S.-C. Shen, Y. Zhang, D. Yoo, J.-B. Limb, J.-H. Ryou, P.D. Yoder, and R.D. Dupuis, Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD, IEEE Photon. Technol. Lett. 19(21), 1744–1746 (2007),
https://doi.org/10.1109/LPT.2007.906052
[6] X. Wang, W. Hu, M. Pan, L. Hou, W. Xie, J. Xu, X. Li, X. Chen, and W. Lu, Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes, J. Appl. Phys. 115(1), 013103-1–8 (2014),
https://doi.org/10.1063/1.4861148
[7] L.-Y. Su, F. Lee, and J.J. Huang, Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a p-type GaN cap layer, IEEE Trans. Electron Devices 61(2), 460–465 (2014),
https://doi.org/10.1109/TED.2013.2294337
[8] T.J. Anderson, A.D. Koehler, J.D. Greenlee, B.D. Weaver, M.A. Mastro, J.K. Hite, C.R. Eddy, Jr., F.J. Kub, and K.D. Hobart, Substrate-dependent effects on the response of AlGaN/GaN HEMTs to 2-MeV proton irradiation, IEEE Electron Device Lett. 35(8), 826–828 (2014),
https://doi.org/10.1109/LED.2014.2331001
[9] S.J. Pearton, B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R. Abernathy, J. Lin, and S.N.G. Chu, GaN based diodes and transistors for chemical, gas, biological and pressure sensing, J. Phys. Condens. Matter 16(29), R961–R994 (2004),
https://doi.org/10.1088/0953-8984/16/29/R02
[10] F. Calle, J. Pedros, T. Palacios, and J. Grajal, Nitride-based surface acoustic wave devices and applications, Phys. Stat. Sol. C 2(3), 976–983 (2005),
https://doi.org/10.1002/pssc.200460605
[11] D. Ciplys, M.S. Shur, N. Pala, A. Sereika, R. Rimeika, R. Gaska, and Q. Fareed, Ultraviolet-sensitive AlGaN-based surface acoustic wave devices, in: Proceedings of IEEE Sensors 2004 (IEEE, 2004) pp. 1345–1348,
https://doi.org/10.1109/ICSENS.2004.1426432
[12] J. Vaitkus, W. Cunningham, E. Gaubas, M. Rahman, S. Sakai, K.M. Smith, and T. Wang, Semi-insulating GaN and its evaluation for α particle detection, Nucl. Instrum. Methods Phys. Res. A 509(1–3), 60–64 (2003),
https://doi.org/10.1016/S0168-9002(03)01550-X
[13] J. Vaitkus, E. Gaubas, T. Shirahama, S. Sakai, T. Wang, K.M. Smith, and W. Cunningham, Space charge effects, carrier capture transient behaviour and α particle detection in semi-insulating GaN, Nucl. Instrum. Methods Phys. Res. A 514(1–3), 141–145 (2003),
https://doi.org/10.1016/j.nima.2003.08.096
[14] J. Grant, R. Bates, W. Cunningham, A. Blue, J. Melone, F. McEwan, J. Vaitkus, E. Gaubas, and V. O'Shea, GaN as a radiation hard particle detector, Nucl. Instrum. Methods Phys. Res. A 576(1), 60–65 (2007),
https://doi.org/10.1016/j.nima.2007.01.121
[15] E. Gaubas, J. Vaitkus, K. Kazlauskas, A. Žukauskas, J. Grant, R. Bates, V. O'Shea, A. Strittmatter, D. Bimberg, and P. Gibart, Recombination characteristics of the proton and neutron irradiated semi-insulating GaN structures, Nucl. Instrum. Methods Phys. Res. A 83(1), 181–184 (2007),
https://doi.org/10.1016/j.nima.2007.08.195
[16] P. Mulligan, J. Wang, and L. Cao, Evaluation of freestanding GaN as an alpha and neutron detector, Nucl. Instrum. Methods Phys. Res. A 719(1), 13–16 (2013),
https://doi.org/10.1016/j.nima.2013.04.019
[17] J. Wang, P.L. Mulligan, and L.R. Cao, Transient current analysis of a GaN radiation detector by TCAD, Nucl. Instrum. Methods Phys. Res. A 761(1), 7–12 (2014),
https://doi.org/10.1016/j.nima.2014.05.098
[18] G. Wang, K. Fu, C. Yao, D. Su, G. Zhang, J. Wang, and M. Lu, GaN-based PIN alpha particle detectors, Nucl. Instrum. Methods Phys. Res. A 663(1), 10–13 (2012),
https://doi.org/10.1016/j.nima.2011.09.003
[19] E. Gaubas, T. Ceponis, A. Jasiunas, V. Kovalevskij, D. Meskauskaite, J. Pavlov, V. Remeikis, A. Tekorius, and J. Vaitkus, Correlative analysis of the in situ changes of carrier decay and proton induced photoluminescence characteristics in chemical vapor deposition grown GaN, Appl. Phys. Lett. 104(6), 062104-1–4 (2014),
https://doi.org/10.1063/1.4865499
[20] M. Moll, Radiation tolerant semiconductor sensors for tracking detectors, Nucl. Instrum. Methods Phys. Res. A 565(1), 202–211 (2006),
https://doi.org/10.1016/j.nima.2006.05.001
[21] S. Choi, H.J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, J.-H. Ryou, S.-C. Shen, P.D. Yoder, and R.D. Dupuis, Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates, IEEE Photon. Technol. Lett. 21(20), 1526–1528 (2009),
https://doi.org/10.1109/LPT.2009.2029073
[22] F. Xie, H. Lu, D.J. Chen, X.Q. Xiu, H. Zhao, R. Zhang, and Y.D. Zheng, Metal–semiconductor–metal ultraviolet avalanche photodiodes fabricated on bulk GaN substrate, IEEE Electron Device Lett. 32(9), 1260–1262 (2011),
https://doi.org/10.1109/LED.2011.2160149
[23] S. Verghese, K.A. McIntosh, R.J. Molnar, L.J. Mahoney, R.L. Aggarwal, M.W. Geis, K.M. Molvar, E.K. Duerr, and I. Melngailis, GaN avalanche photodiodes operating in linear-gain mode and Geiger mode, IEEE Trans. Electron Devices 48(3), 502–511 (2001),
https://doi.org/10.1109/16.906443
[24] M.J. Hsu, H. Finkelstein, and S.C. Esener, A CMOS STI-bound single-photon avalanche diode with 27-ps timing resolution and a reduced diffusion tail, IEEE Electron Device Lett. 30(6), 641–643 (2009),
https://doi.org/10.1109/LED.2009.2019974
[25] J.S. Ng, C.H. Tan, B.K. Ng, P.J. Hambleton, J.P.R. David, G.J. Rees, A.H. You, and D.S. Ong, Effect of dead space on avalanche speed [APDs], IEEE Trans. Electron Devices 49(4), 544–549 (2002),
https://doi.org/10.1109/16.992860
[26] C. Groves, C.H. Tan, J.P.R. David, G.J. Rees, and M.M. Hayat, Exponential time response in analogue and Geiger mode avalanche photodiodes, IEEE Trans. Electron Devices 52(7), 1527–1534 (2005),
https://doi.org/10.1109/TED.2005.850943
[27] M.M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J.C. Campbell, B.E.A. Saleh, and M.C. Teich, Gain-bandwidth characteristics of thin avalanche photodiodes, IEEE Trans. Electron Devices 49(5), 770–781 (2002),
https://doi.org/10.1109/16.998583
[28] M. Ren, Y. Liang, W. Sun, G. Wu, J.C. Campbell, and H. Zeng, Timing response of sinusoidal-gated Geiger mode InGaAs/InP APD, IEEE Photonics Technol. Lett. 26(17), 1762–1765 (2014),
https://doi.org/10.1109/LPT.2014.2334057
[29] Y.G. Xiao and M.J. Deen, Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling, IEEE Trans. Electron Devices 48(4), 661–670 (2001),
https://doi.org/10.1109/16.915678
[30] M.M. Hayat and G. Dong, A new approach for computing the bandwidth statistics of avalanche photodiodes, IEEE Trans. Electron Devices 47(6), 1273–1279 (2000),
https://doi.org/10.1109/16.842973
[31] D. Zhou, F. Liu, H. Lu, D. Chen, F. Ren, R. Zhang, and Y. Zheng, High-temperature single photon detection performance of 4H-SiC avalanche photodiodes, IEEE Photonics Technol. Lett. 26(11), 1136–1138 (2014),
https://doi.org/10.1109/LPT.2014.2316793
[32] A. Dalla Mora, A. Tosi, S. Tisa, and F. Zappa, Single-photon avalanche diode model for circuit simulations, IEEE Photonics Technol. Lett. 19(23), 1922–1924 (2007),
https://doi.org/10.1109/LPT.2007.908768
[33] K. Bløtekjær, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron Devices 17(1), 38–47 (1970),
https://doi.org/10.1109/T-ED.1970.16921
[34] R. van Overstraeten and H. de Man, Measurement of the ionization rates in diffused silicon p-n junctions, Solid State Electron. 13(5), 583–608 (1970),
https://doi.org/10.1016/0038-1101(70)90139-5
[35] M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, and P.P. Ruden, Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries, IEEE Trans. Electron Devices 48(3), 535–542 (2001),
https://doi.org/10.1109/16.906448
[36] E. Gaubas, T. Ceponis, V. Kalesinskas, J. Pavlov, and J. Vysniauskas, Simulations of operation dynamics of different type GaN particle sensors, Sensors 15(3), 5429–5473 (2015),
https://doi.org/10.3390/s150305429
[37] E. Gaubas, T. Ceponis, L. Deveikis, D. Meskauskaite, S. Miasojedovas, J. Mickevicius, J. Pavlov, K. Pukas, J. Vaitkus, M. Velicka, M. Zajac, and R. Kucharski, Study of neutron irradiated structures of ammonothermal GaN, J. Phys. D 50, 135102 (2017),
https://doi.org/10.1088/1361-6463/aa5c6c