Received 8 December 2017; revised 15 January 2018; accepted 21
June 2018
References
/
Nuorodos
[1] Y.-A. Chen, C.-H. Kuo, L.-C. Chang, and J.-P. Wu, Pulsed
growth epitaxial method of GaN-based light-emitting diodes on
patterned SiO
2 AlN/Sapphire template, IEEE J. Quantum
Electron.
50(10), 854–859 (2014),
https://doi.org/10.1109/JQE.2014.2353932
[2] C.H. Kuo, Y.A. Chen, J.P. Wu, and L.C. Chang, Efficiency
improvement of near-ultraviolet nitride-based
light-emitting-diode prepared on GaN nano-rod arrays by
metalorganic chemical vapor deposition, IEEE J. Quantum
Electron.
50(3), 129–131 (2014),
https://doi.org/10.1109/JQE.2013.2297413
[3] T. Frost, A. Banerjee, K. Sun, S.L. Chuang, and P.
Bhattacharya, InGaN/GaN quantum dot red (λ = 630 nm) laser, IEEE
J. Quantum Electron.
49(11), 923–931 (2013),
https://doi.org/10.1109/JQE.2013.2281062
[4] M.M. Satter, Z. Lochner, T.-T. Kao, Y.-S. Liu, X.-H. Li,
S.-C. Shen, R.D. Dupuis, and P.D. Yoder, AlGaN-based vertical
injection laser diodes using inverse tapered p-waveguide for
efficient hole transport, IEEE J. Quantum Electron.
50(3),
166–173 (2014),
https://doi.org/10.1109/JQE.2014.2300757
[5] S.-C. Shen, Y. Zhang, D. Yoo, J.-B. Limb, J.-H. Ryou, P.D.
Yoder, and R.D. Dupuis, Performance of deep ultraviolet GaN
avalanche photodiodes grown by MOCVD, IEEE Photon. Technol.
Lett.
19(21), 1744–1746 (2007),
https://doi.org/10.1109/LPT.2007.906052
[6] X. Wang, W. Hu, M. Pan, L. Hou, W. Xie, J. Xu, X. Li, X.
Chen, and W. Lu, Study of gain and photoresponse characteristics
for back-illuminated separate absorption and multiplication GaN
avalanche photodiodes, J. Appl. Phys.
115(1), 013103-1–8
(2014),
https://doi.org/10.1063/1.4861148
[7] L.-Y. Su, F. Lee, and J.J. Huang, Enhancement-mode GaN-based
high-electron mobility transistors on the Si substrate with a
p-type GaN cap layer, IEEE Trans. Electron Devices
61(2),
460–465 (2014),
https://doi.org/10.1109/TED.2013.2294337
[8] T.J. Anderson, A.D. Koehler, J.D. Greenlee, B.D. Weaver,
M.A. Mastro, J.K. Hite, C.R. Eddy, Jr., F.J. Kub, and K.D.
Hobart, Substrate-dependent effects on the response of AlGaN/GaN
HEMTs to 2-MeV proton irradiation, IEEE Electron Device Lett.
35(8),
826–828 (2014),
https://doi.org/10.1109/LED.2014.2331001
[9] S.J. Pearton, B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R.
Abernathy, J. Lin, and S.N.G. Chu, GaN based diodes and
transistors for chemical, gas, biological and pressure sensing,
J. Phys. Condens. Matter
16(29), R961–R994 (2004),
https://doi.org/10.1088/0953-8984/16/29/R02
[10] F. Calle, J. Pedros, T. Palacios, and J. Grajal,
Nitride-based surface acoustic wave devices and applications,
Phys. Stat. Sol. C
2(3), 976–983 (2005),
https://doi.org/10.1002/pssc.200460605
[11] D. Ciplys, M.S. Shur, N. Pala, A. Sereika, R. Rimeika, R.
Gaska, and Q. Fareed, Ultraviolet-sensitive AlGaN-based surface
acoustic wave devices, in:
Proceedings of IEEE Sensors 2004
(IEEE, 2004) pp. 1345–1348,
https://doi.org/10.1109/ICSENS.2004.1426432
[12] J. Vaitkus, W. Cunningham, E. Gaubas, M. Rahman, S. Sakai,
K.M. Smith, and T. Wang, Semi-insulating GaN and its evaluation
for α particle detection, Nucl. Instrum. Methods Phys. Res. A
509(1–3),
60–64 (2003),
https://doi.org/10.1016/S0168-9002(03)01550-X
[13] J. Vaitkus, E. Gaubas, T. Shirahama, S. Sakai, T. Wang,
K.M. Smith, and W. Cunningham, Space charge effects, carrier
capture transient behaviour and α particle detection in
semi-insulating GaN, Nucl. Instrum. Methods Phys. Res. A
514(1–3),
141–145 (2003),
https://doi.org/10.1016/j.nima.2003.08.096
[14] J. Grant, R. Bates, W. Cunningham, A. Blue, J. Melone, F.
McEwan, J. Vaitkus, E. Gaubas, and V. O'Shea, GaN as a radiation
hard particle detector, Nucl. Instrum. Methods Phys. Res. A
576(1),
60–65 (2007),
https://doi.org/10.1016/j.nima.2007.01.121
[15] E. Gaubas, J. Vaitkus, K. Kazlauskas, A. Žukauskas, J.
Grant, R. Bates, V. O'Shea, A. Strittmatter, D. Bimberg, and P.
Gibart, Recombination characteristics of the proton and neutron
irradiated semi-insulating GaN structures, Nucl. Instrum.
Methods Phys. Res. A
83(1), 181–184 (2007),
https://doi.org/10.1016/j.nima.2007.08.195
[16] P. Mulligan, J. Wang, and L. Cao, Evaluation of
freestanding GaN as an alpha and neutron detector, Nucl.
Instrum. Methods Phys. Res. A
719(1), 13–16 (2013),
https://doi.org/10.1016/j.nima.2013.04.019
[17] J. Wang, P.L. Mulligan, and L.R. Cao, Transient current
analysis of a GaN radiation detector by TCAD, Nucl. Instrum.
Methods Phys. Res. A
761(1), 7–12 (2014),
https://doi.org/10.1016/j.nima.2014.05.098
[18] G. Wang, K. Fu, C. Yao, D. Su, G. Zhang, J. Wang, and M.
Lu, GaN-based PIN alpha particle detectors, Nucl. Instrum.
Methods Phys. Res. A
663(1), 10–13 (2012),
https://doi.org/10.1016/j.nima.2011.09.003
[19] E. Gaubas, T. Ceponis, A. Jasiunas, V. Kovalevskij, D.
Meskauskaite, J. Pavlov, V. Remeikis, A. Tekorius, and J.
Vaitkus, Correlative analysis of the in situ changes of carrier
decay and proton induced photoluminescence characteristics in
chemical vapor deposition grown GaN, Appl. Phys. Lett.
104(6),
062104-1–4 (2014),
https://doi.org/10.1063/1.4865499
[20] M. Moll, Radiation tolerant semiconductor sensors for
tracking detectors, Nucl. Instrum. Methods Phys. Res. A
565(1),
202–211 (2006),
https://doi.org/10.1016/j.nima.2006.05.001
[21] S. Choi, H.J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, J.-H.
Ryou, S.-C. Shen, P.D. Yoder, and R.D. Dupuis, Geiger-mode
operation of GaN avalanche photodiodes grown on GaN substrates,
IEEE Photon. Technol. Lett.
21(20), 1526–1528 (2009),
https://doi.org/10.1109/LPT.2009.2029073
[22] F. Xie, H. Lu, D.J. Chen, X.Q. Xiu, H. Zhao, R. Zhang, and
Y.D. Zheng, Metal–semiconductor–metal ultraviolet avalanche
photodiodes fabricated on bulk GaN substrate, IEEE Electron
Device Lett.
32(9), 1260–1262 (2011),
https://doi.org/10.1109/LED.2011.2160149
[23] S. Verghese, K.A. McIntosh, R.J. Molnar, L.J. Mahoney, R.L.
Aggarwal, M.W. Geis, K.M. Molvar, E.K. Duerr, and I. Melngailis,
GaN avalanche photodiodes operating in linear-gain mode and
Geiger mode, IEEE Trans. Electron Devices
48(3), 502–511
(2001),
https://doi.org/10.1109/16.906443
[24] M.J. Hsu, H. Finkelstein, and S.C. Esener, A CMOS STI-bound
single-photon avalanche diode with 27-ps timing resolution and a
reduced diffusion tail, IEEE Electron Device Lett.
30(6),
641–643 (2009),
https://doi.org/10.1109/LED.2009.2019974
[25] J.S. Ng, C.H. Tan, B.K. Ng, P.J. Hambleton, J.P.R. David,
G.J. Rees, A.H. You, and D.S. Ong, Effect of dead space on
avalanche speed [APDs], IEEE Trans. Electron Devices
49(4),
544–549 (2002),
https://doi.org/10.1109/16.992860
[26] C. Groves, C.H. Tan, J.P.R. David, G.J. Rees, and M.M.
Hayat, Exponential time response in analogue and Geiger mode
avalanche photodiodes, IEEE Trans. Electron Devices
52(7),
1527–1534 (2005),
https://doi.org/10.1109/TED.2005.850943
[27] M.M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J.C.
Campbell, B.E.A. Saleh, and M.C. Teich, Gain-bandwidth
characteristics of thin avalanche photodiodes, IEEE Trans.
Electron Devices
49(5), 770–781 (2002),
https://doi.org/10.1109/16.998583
[28] M. Ren, Y. Liang, W. Sun, G. Wu, J.C. Campbell, and H.
Zeng, Timing response of sinusoidal-gated Geiger mode InGaAs/InP
APD, IEEE Photonics Technol. Lett.
26(17), 1762–1765
(2014),
https://doi.org/10.1109/LPT.2014.2334057
[29] Y.G. Xiao and M.J. Deen, Temperature dependent studies of
InP/InGaAs avalanche photodiodes based on time domain modeling,
IEEE Trans. Electron Devices
48(4), 661–670 (2001),
https://doi.org/10.1109/16.915678
[30] M.M. Hayat and G. Dong, A new approach for computing the
bandwidth statistics of avalanche photodiodes, IEEE Trans.
Electron Devices
47(6), 1273–1279 (2000),
https://doi.org/10.1109/16.842973
[31] D. Zhou, F. Liu, H. Lu, D. Chen, F. Ren, R. Zhang, and Y.
Zheng, High-temperature single photon detection performance of
4H-SiC avalanche photodiodes, IEEE Photonics Technol. Lett.
26(11),
1136–1138 (2014),
https://doi.org/10.1109/LPT.2014.2316793
[32] A. Dalla Mora, A. Tosi, S. Tisa, and F. Zappa,
Single-photon avalanche diode model for circuit simulations,
IEEE Photonics Technol. Lett.
19(23), 1922–1924 (2007),
https://doi.org/10.1109/LPT.2007.908768
[33] K. Bløtekjær, Transport equations for electrons in
two-valley semiconductors, IEEE Trans. Electron Devices
17(1),
38–47 (1970),
https://doi.org/10.1109/T-ED.1970.16921
[34] R. van Overstraeten and H. de Man, Measurement of the
ionization rates in diffused silicon
p-n junctions,
Solid State Electron.
13(5), 583–608 (1970),
https://doi.org/10.1016/0038-1101(70)90139-5
[35] M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M.
Goano, E. Ghillino, G. Ghione, J.D. Albrecht, and P.P. Ruden,
Monte Carlo simulation of electron transport in the III-nitride
wurtzite phase materials system: binaries and ternaries, IEEE
Trans. Electron Devices
48(3), 535–542 (2001),
https://doi.org/10.1109/16.906448
[36] E. Gaubas, T. Ceponis, V. Kalesinskas, J. Pavlov, and J.
Vysniauskas, Simulations of operation dynamics of different type
GaN particle sensors, Sensors
15(3), 5429–5473 (2015),
https://doi.org/10.3390/s150305429
[37] E. Gaubas, T. Ceponis, L. Deveikis, D. Meskauskaite, S.
Miasojedovas, J. Mickevicius, J. Pavlov, K. Pukas, J. Vaitkus,
M. Velicka, M. Zajac, and R. Kucharski, Study of neutron
irradiated structures of ammonothermal GaN, J. Phys. D
50,
135102 (2017),
https://doi.org/10.1088/1361-6463/aa5c6c