Received 10 January 2018; revised 15 March 2018; accepted 21 June
2018
Calculations of energy levels and
electron-impact excitation cross sections of the Auger
autoionizing states 4p5nln'l' (nl =
4d, 5s, 5p; n'l'= 4d, 5s, 5p, 5d, 6s, 6p, 6d, 7s, 7p)
of Sr ion were performed. A large-scale configuration
interaction method on the basis of the solutions of
Dirac–Fock–Slater equations was used. The cross sections of
electron-impact simultaneous ionization and excitation, and
Auger decay of the electron-impact excited states of Sr atom
to the 4p-core excited autoionizing states of Sr ion were
calculated for the first time and used to estimate the
intensity of ejected electron lines. Tentative identification
of the Auger electron lines of Sr ion registered in a number
of experiments is presented.
Keywords: electronic
structure of atoms and molecules, theory, autoionization, atomic
excitation and ionization
PACS: 31.15.-p,
32.80.Zb, 34.80.Dp
References
/
Nuorodos
[1] C. Banahan, J.T. Costello, D. Kilbane, and P. van Kampen,
4p-inner-shell and double-excitation spectrum of Sr II, Phys.
Rev. A
79(2), 022509 (2009),
https://doi.org/10.1103/physreva.79.022509
[2] D. Rassi and K.J. Ross, The ejected-electron spectrum of
barium vapour autoionizing and Auger levels excited by 20–500 eV
electrons, J. Phys. B
13(23), 4683–4694 (1980),
https://doi.org/10.1088/0022-3700/13/23/024
[3] W. Schmitz, B. Breuckmann, and W. Mehlhorn, Low-energy
electron spectra of atomic Ca and Sr excited by 2 keV electrons,
J. Phys. B
9(16), L493–L497 (1976),
https://doi.org/10.1088/0022-3700/9/16/007
[4] M.D. White, D. Rassi, and K.J. Ross, The ejected electron
spectrum of strontium vapour autoionizing and Auger levels
excited by 23.5 and 500 eV electrons, J. Phys. B
12(2),
315–323 (1979),
https://doi.org/10.1088/0022-3700/12/2/020
[5] M.W.D. Mansfield and G.H. Newsom, The Sr I absoption
spectrum in the vacuum ultraviolet: excitation of the
4p-subshell, Proc. R. Soc. London A
377, 431–448 (1981),
https://doi.org/10.1098/rspa.1981.0134
[6] A.A. Borovik, I.S. Aleksakhin, V.F. Bratsev, and A.V.
Kupliauskiene, Excitation and electron decay of the autoionizing
states of the rare earth atoms: Strontium, Opt. Spektrosk.
53(6),
976–980 (1982) [in Russian]
[7] S.M. Kazakov and O.V. Khristoforov, Electron spectra from
autoionizing states of strontium and calcium excited by low- and
intermediate-energy electrons, Sov. Phys. JETP
61(4),
656–664 (1985)
[8] V. Hrytsko, G. Kerevičius, A. Kupliauskienė, and A. Borovik,
The 5p autoionization spectra of Ba atoms excited by electron
impact: identification of lines, J. Phys. B
49, 145201
(2016),
https://doi.org/10.1088/0953-4075/49/14/145201
[9] A. Borovik, V. Vakula, and A. Kupliauskienė, The 4p
6-core
excited autoionizing states of strontium: classification and
excitation dynamics, Lith. J. Phys.
47(2), 129–135
(2007),
https://doi.org/10.3952/lithjphys.47203
[10] A. Kupliauskienė, G. Kerevičius, V. Borovik, I.
Shafranyosh, and A. Borovik, The energy structure and decay
channels of the 4p
6 shell excited states in Sr, J.
Phys. B
50, 225201 (2017),
https://doi.org/10.1088/1361-6455/aa90df
[11] S.H. Tersigni,
Core-excited Nanoparticles and Methods
of Their Use in the Diagnosis and Treatment of Disease,
Patent US
8197471
B1, WO212112547A1 (2012)
[12] J. Nienhaus, O.I. Zatsarinny, and W. Mehlhorn, Experimental
and theoretical Auger and autoionization spectra for
electron-impact on laser-excited Ba atom, Phys. Essays
13(2–3),
307–324 (2000),
https://doi.org/10.4006/1.3028825
[13] A. Borovik, V. Roman, and A. Kupliauskienė, The 4p
6
autoionization cross section of Rb atoms excited by low-energy
electron impact, J. Phys. B
45(4), 045204 (2012),
https://doi.org/10.1088/0953-4075/45/4/045204
[14] J.P. Connerade, S.J. Rose, and I.P. Grant, Two-step
autoionization and double ionization anomaly in Ba I, J. Phys. B
13(2), L53–L55 (1979),
https://doi.org/10.1088/0022-3700/12/2/004
[15] R.D. Cowan,
The Theory of Atomic Structure and Spectra
(University of California Press, Berkeley, CA, 1981)
[16] J.E. Hansen, The structure of the autoionizing p5ds
configurations in Ma II, Ca II, Sr II and Ba II and
interpretation of electron impact cross sections in these ions,
J. Phys. B
8(17), 2759–2770 (1975),
https://doi.org/10.1088/0022-3700/8/17/007
[17] C. Froese Fischer, General Hatree-Fock program, Comput.
Phys. Commun.
43(3), 355–365 (1987),
https://doi.org/10.1016/0010-4655(87)90053-1
[18] A. Kupliauskienė, On the application of relaxed-orbital and
sudden perturbation approximations for photoionization of atoms,
J. Phys. B
34, 345–361 (2001),
https://doi.org/10.1088/0953-4075/34/3/312
[19] M.F. Gu, The flexible atomic code, Can. J. Phys.
86(5),
675–689 (2008),
https://doi.org/10.1139/p07-197
[20] O. Zatsarinny (2016) [private communication]
[21] A. Kupliauskienė, A general expression for the excitation
cross-section of polarized atoms by polarized electrons, Phys.
Scripta
75(4), 524–530 (2007),
https://doi.org/10.1088/0031-8949/75/4/026
[22] A. Kupliauskienė and V. Tutlys, Properties of Auger
electrons following excitation of polarized atoms by polarized
electrons, Nucl. Instrum. Methods B
267(2), 263265
(2009),
https://doi.org/10.1016/j.nimb.2008.10.039
[23] G. Kerevičius and A. Kupliauskienė, Classification of the
5p
5nln’l’LSJ energy levels of Cs excited by 30
eV electrons, Lith. J. Phys.
55(2), 84 (2015),
https://doi.org/10.3952/physics.v55i2.3098
[24] S. Kour and R. Srivastava, Excitation of the lowest
autoionizing
np
5(
n+1)s
2 2P
3/2,
1/2 states of Na (
n = 2), K (
n = 3), Rb (
n
= 4) and Cs (
n = 5) by electron impact, J. Phys. B
32(10),
2323–2342 (1999),
https://doi.org/10.1088/0953-4075/32/10/303