References
/
Nuorodos
[1] J.F. Hartwig, Carbon–heteroatom bond formation catalysed by
organometallic complexes, Nature
455, 314322 (2008),
https://doi.org/10.1038/nature07369
[2] J. Twilton, C. Le, P. Zhang, M.H. Shaw, R.W. Evans, and
D.W.C. MacMillan, The merger of transition metal and
photocatalysis, Nat. Rev. Chem.
1, 118 (2017),
https://doi.org/10.1038/s41570-017-0052
[3] M.S. Mehata, Y. Yang, Z.J. Qu, J.S. Chen, F.J. Zhao, and
K.L. Han, Spin mixed charge transfer states of iridium complex
Ir(ppy)3: transient absorption and time-resolved
photoluminescence, RSC Adv.
5, 3409499 (2015),
https://doi.org/10.1039/c5ra01404b
[4] K. Kalyanasundaram and M. Grätzel, Applications of
functionalized transition metal complexes in photonic and
optoelectronic devices, Coord. Chem. Rev.
177, 347414
(1998),
https://doi.org/10.1016/S0010-8545(98)00189-1
[5] M. Gerloch and E.C. Constable,
Transition Metal
Chemistry (VCH, Weinheim, 1994),
https://doi.org/10.1002/bbpc.19950990619
[6] E.C. Constable,
Metals and Ligand Reactivity (VCH,
Weinheim, 1996),
https://doi.org/10.1002/ange.19961081541
[7] Ch. Elschenbroich and A. Salzer,
Organometallics,
2nd ed. (VCH, Weinheim, 1992),
https://trove.nla.gov.au/version/42575974
[8] T.A. Albright, J.K. Burdett, and M.H. Whangbo,
Orbital
Interactions in Chemistry (Wiley, New York, 1985),
https://www.fzu.cz/~knizek/literatura/Albright2013.pdf
[9] M.J.S. Dewar, A review of the
π-complex theory,
Bull. Soc. Chim. Fr.
18, C71–C79 (1951)
[10] J. Chatt and L.A. Duncanson, Olefin co-ordination
compounds. Part III. Infra-red spectra and structure: attempted
preparation of acetylene complexes, J. Chem. Soc., 2939–2947
(1953),
https://doi.org/10.1039/JR9530002939
[11] F.A. Cotton and G. Wilkinson,
Advanced Inorganic
Chemistry (Wiley & Sons, New York, 1980),
https://www.amazon.co.uk/Advanced-Inorganic-Chemistry-Comprehensive-Text/dp/0471027758/
[12] R.K. Hocking and T.W. Hambley, Database analysis of
transition metal carbonyl bond lengths: Insight into the
periodicity of
π backbonding,
σ donation, and
the factors affecting the electronic structure of the TM–C꞉O
moiety, Organometallics
26, 2815–2823 (2007),
https://doi.org/10.1021/om061072n
[13] S.A. Decker and M. Klobukowski, The first carbonyl bond
dissociation energies of M(CO)
5 and M(CO)
4(C
2H
2)
(M = Fe, Ru, and Os): The role of the acetylene ligand from a
density functional perspective, J. Am. Chem. Soc.
120,
9342–9355 (1998),
https://doi.org/10.1021/ja981197m
[14] G.N. Lewis, The atom and the molecule, J. Am. Chem. Soc.
38,
762–785 (1916),
https://doi.org/10.1021/ja02261a002
[15] J.M. Foster and S.F. Boys, Canonical configurational
interaction procedure, Rev. Mod. Phys.
32, 300–302
(1960),
https://doi.org/10.1103/RevModPhys.32.300
[16] C. Edmiston and K. Ruedenberg, Localized atomic and
molecular orbitals, Rev. Mod. Phys.
35, 457–65 (1963),
https://doi.org/10.1103/RevModPhys.35.457
[17] C.C.J. Roothaan, New developments in molecular orbital
theory, Rev. Mod. Phys.
23(2), 69–88 (1951)
https://doi.org/10.1103/RevModPhys.23.69
[18] C. Edmiston and K. Ruedenberg, Localized atomic and
molecular orbitals. II, J. Chem. Phys.
43, S97–S116
(1965),
https://doi.org/10.1063/1.1701520
[19] W. England, L.S. Salmon, and K. Ruedenberg, Localized
molecular orbitals: A bridge between chemical intuition and
molecular quantum mechanics, Top. Curr. Chem.
23, 31–123
(1971),
https://doi.org/10.1007/Bfb0051440
[20] F. Weinhold and C.R. Landis,
Valency and Bonding: A
Natural Bond Orbital Donor-Acceptor Perspective (Cambridge
University Press, Cambridge, 2005),
https://www.cambridge.org/academic/subjects/chemistry/physical-chemistry/valency-and-bonding-natural-bond-orbital-donor-acceptor-perspective?format=HB
[21] F. Weinhold, Natural Bond Orbital Methods, in:
Encyclopedia
of Computational Chemistry (Wiley, Chichester, 1998),
https://doi.org/10.1002/0470845015.cna009
[22] C.R. Landis, A.E. Reed, L.A. Curtiss, and F. Weinhold,
Intermolecular interactions from a natural bond orbital,
donor-acceptor viewpoint, Chem. Rev.
88, 899–926 (1988),
https://doi.org/10.1021/cr00088a005
[23] S. Dapprich and G. Frenking, Investigation of
donor-acceptor interactions: a charge decomposition analysis
using fragment molecular orbitals, J. Phys. Chem.
99,
9352–9362 (1995),
https://doi.org/10.1021/j100023a009
[24] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G.A. Petersson, et al.,
Gaussian 09 (Gaussian Inc.,
Wallingford, CT, USA, 2009),
http://gaussian.com/glossary/g09/
[25] A. Becke, Density-functional exchange-energy approximation
with correct asymptotic behavior, Phys. Rev. A
38,
3098–3100 (1988),
https://doi.org/10.1103/PhysRevA.38.3098
[26] Ch. Lee, W. Yang, and R.G. Parr, Development of the
Colle-Salvetti correlation-energy formula into a functional of
the electron density, Phys. Rev. B
37, 785–789 (1988),
https://doi.org/10.1103/PhysRevB.37.785
[27] F.-Q. Shi, X. Li, Y. Xia, L. Zhang, and Z.-X. Yu, DFT study
of the mechanisms of in water Au(I)-catalyzed tandem
[3,3]-rearrangement/Nazarov reaction/[1,2]-hydrogen shift of
enynyl acetates: a proton-transport catalysis strategy in the
water-catalyzed [1,2]-hydrogen shift, J. Am. Chem. Soc.
129,
15503–15512 (2007),
https://doi.org/10.1021/ja071070
[28] A. Becke, Density functional thermochemistry. III. The role
of exact exchange, J. Chem. Phys.
98, 5648–5652 (1993),
https://doi.org/10.1063/1.464913
[29] G. Kovacs, G. Ujaque, and A. Lledos, The reaction mechanism
of the hydroamination of alkenes catalyzed by gold(i)–phosphine:
the role of the counterion and the N-nucleophile substituents in
the proton-transfer step, J. Am. Chem. Soc.
130, 853–864
(2008),
https://doi.org/10.1021/ja073578i
[30] A. Vektariene, G. Vektaris, and D.W.H. Rankin, DFT study of
the regioselectivity of addition of sulfenylchloride to ethenes,
Heteroatom Chem.
18(7), 695–703 (2007),
https://doi.org/10.1002/hc.20378
[31] R. Janciene, Z. Stumbreviciute, A. Vektariene, L.
Kosychova, A. Klimavicius, A. Palaima, and B. Puodziunaite,
Synthesis of novel annelated systems based on the interaction
and reactivity estimation of amino-1,5-benzodiazepin-2-ones with
dimethyl-2-oxoglutaconate, J. Heterocyclic Chem.
461,
339–1345 (2009),
https://doi.org/10.1002/jhet.226
[32] R. Janciene, A. Vektariene, Z. Stumbreviciute, and B.
Puodziunaite, Experimental and theoretical investigation of
substituent effects in a two-pathway reaction of
tetrahydro-1,5-benzodiazepine-2-thiones, Monatsh. Chem.
142(6),
609–618 (2011),
https://doi.org/10.1007/s00706-011-0496-4
[33] A. Vektariene, Insights into the mechanism of the
benzoannelated thieno[3,2-
b]furan halogenation.
Importance of HOMO–HOMO interaction, J. Phys. Chem. A
117,
8449–8458 (2013),
https://doi.org/10.1021/jp402257u
[34] G. Mazzone, N. Russo, and E. Sicilia, Homogeneous gold
catalysis: hydration of 1,2-diphenylacetylene with methanol in
aqueous media.
A theoretical viewpoint, Organometallics
31, 3074–3080
(2012); J. Org. Chem.
79, 1954–1970 (2014),
https://doi.org/10.1021/om2012369
[35] A.E. Ledesma, C. Contreras, J. Svoboda, A. Vektariene, and
S.A. Brandan, Theoretical structures and experimental
vibrational spectra of isomeric benzofused thieno[3,2-
b]
furan compounds, J. Mol. Struct.
1063, 356 (2014); J.
Mol. Struct. 967, 159–165 (2010),
https://doi.org/10.1016/j.molstruc.2014.01.087
[36] G. Mazzone, N. Russo, and E. Sicilia, Catalytic role of
dinuclear
σ,
π-acetylide gold(i) complexes in
the hydroamination of terminal alkynes: theoretical insights, J.
Chem. Theory Comput.
11, 581–590 (2015),
https://doi.org/10.1021/ct500849m
[37] A. Vektariene, Theoretical study on the mechanism of
thieno[3,2-b]benzofuran bromination: the importance of Lewis and
non-Lewis type NBOs interactions along the reaction path, J.
Phys. Org. Chem. 29, 21–28 (2016),
https://doi.org/10.1002/poc.3483
[38] A. Schaefer, C. Huber, and R. Ahlrichs, Fully optimized
contracted Gaussian-basis sets of triple zeta valence quality
for atoms Li to Kr, J. Chem. Phys.
100, 5829–5835
(1994),
https://doi.org/10.1063/1.467146
[39] A. Schaefer, H. Horn, and R. Ahlrichs, Fully optimized
contracted Gaussian basis sets for atoms Li to Kr, J. Chem.
Phys.
97, 2571–2577 (1992),
https://doi.org/10.1063/1.463096
[40] B.Y. Park, T.P. Montgomery, V.J. Garza, and J.M. Krische,
Ruthenium catalyzed hydrohydroxyalkylation of isoprene with
heteroaromatic secondary alcohols: isolation and reversible
formation of the putative metallacycle intermediate, J. Am.
Chem. Soc.
135, 16320–16323 (2013),
https://doi.org/10.1021/ol401184k
[41] V. Jonas, G. Frenking, and M.T. Reetz, Comparative
theoretical study of Lewis acid-base complexes of BH
3,
BF
3, BCl
3, AlCl
3, and SO
2,
J. Am. Chem. Soc.
116, 8741–8753 (1994),
https://doi.org/10.1021/ja00098a037
[42] P. Jerabek, H.W. Roesky, G. Bertrand, and G. Frenking,
Coinage metals binding as main group elements: structure and
bonding of the carbene complexes [TM(cAAC)2] and [TM(cAAC)2] +
(TM = Cu, Ag, Au), J. Am. Chem. Soc.
136, 17123–17135
(2014),
https://dx.doi.org/10.1021/ja508887s
[43] R. Dennington, T. Keith, and J. Millam,
GaussView,
Version 5.0.9 (Semichem, Inc., Shawnee Mission, KS, USA,
2009)