Received 18 April 2018; revised 31 May 2018; accepted 21 June 2018
References
/
Nuorodos
[1] European Commission,
Energy Saving,
https://ec.europa.eu/energy/en/topics/energyefficiency/buildings
[2] A. Asp, Y. Sydorov, M. Valkama, and J. Niemelä, Radio signal
propagation and attenuation measurements for modern residential
buildings, in:
Proceedings of the 2012 IEEE Globecom
Workshops (IEEE, 2012) pp. 580–584,
https://doi.org/10.1109/GLOCOMW.2012.6477638
[3] M.D’Amore, D. Lampasi, M. Sarto, A. Tamburrano, V. De
Santis, and M. Feliziani, Optimal design of multifunctional
transparent shields against radio frequency electromagnetic
fields, in:
Proceedings of the 2009 Electromagnetic
Compatibility Symposium Adelaide (IEEE, 2009) pp. 81–86,
https://doi.org/10.1109/EMCSA.2009.5349770
[4] G.I. Kiani, A. Karlsson, L. Olsson, and K.P. Esselle, Glass
characterization for designing frequency selective surfaces to
improve transmission through energy saving glass windows, in:
Proceedings
of the 2007 Asia-Pacific Microwave Conference (IEEE, 2007)
pp. 1–4,
https://doi.org/10.1109/APMC.2007.4554974
[5] H. Tommerup, J. Rose, and S. Svendsen, Energy-efficient
houses built according to the energy performance requirements
introduced in Denmark in 2006, Energy Build.
39(10),
1123–1130 (2007),
https://doi.org/10.1016/j.enbuild.2006.12.011
[6] R.B. Schulz, V. Plantz, and D. Brush, Shielding theory and
practice, IEEE Trans. Electromagn. Compat.
30(3),
187–201 (1988),
https://doi.org/10.1109/15.3297
[7] P. Ängskog, M. Bäckström, and B. Vallhagen, Measurement of
radio signal propagation through window panes and energy saving
windows, in:
Proceedings of the 2015 IEEE International
Symposium on Electromagnetic Compatibility (EMC)
(IEEE, 2015) pp. 74–79,
https://doi.org/10.1109/ISEMC.2015.7256135
[8] M. D’Amore, S. Greco, D. Lampasi, M. Sarto, and A.
Tamburrano, A new structure of transparent films for heat
control and electromagnetic shielding of windows, in:
2009
International Symposium on Electromagnetic Compatibility – EMC
Europe (IEEE, 2009) pp. 1–4,
https://doi.org/10.1109/EMCEUROPE.2009.5189719
[9] P. Ragulis, R. Simniškis, and Ž. Kancleris, Shift and
elimination of microwave Fabry-Perot resonances in a dielectric
covered with a thin metal layer, J. Appl. Phys.
117(16),
165302 (2015),
https://doi.org/10.1063/1.4918917
[10] H.-Y. Chen and T.-H. Lin, Dual-band frequency selective
surface for improving the transmission of Bluetooth and WLAN
signals through an energy-saving glass, J. Chin. Inst. Eng.
39(3),
331–336 (2016),
https://doi.org/10.1080/02533839.2015.1112245
[11] G.I. Kiani, A.R. Weily, and K.P. Esselle, A novel
absorb/transmit FSS for secure indoor wireless networks with
reduced multipath fading, IEEE Microw. Wirel. Compon. Lett.
16(6),
378–380 (2006),
https://doi.org/10.1109/LMWC.2006.875589
[12] T. Frenzel, J. Rohde, and J. Opfer,
Elektromagnetische
Schirmung von Gebäuden (BSI, Bonn, 2007),
[PDF]
[13] D.A. Lampasi, A. Tamburrano, S. Bellini, M. Tului, A.
Albolino, and M.S. Sarto, Effect of grain size and distribution
on the shielding effectiveness of transparent conducting thin
films, IEEE Trans. Electromagn. Compat.
56(2), 352–359
(2014),
https://doi.org/10.1109/TEMC.2013.2282085
[14] Y. Corredores, P. Besnier, X. Castel, J. Sol, C. Dupeyrat,
and P. Foutrel, Adjustment of shielding effectiveness, optical
transmission, and sheet resistance of conducting films deposited
on glass substrates, IEEE Trans. Electromagn. Compat.
59(4),
1070–1078 (2017),
https://doi.org/10.1109/TEMC.2017.2654269
[15] M. Gustafsson, A. Karlsson, A.P. Rebelo, and B. Widenberg,
Design of frequency selective windows for improved indoor
outdoor communication, IEEE Trans. Antennas Propag.
54(6),
1897–1900 (2006),
https://doi.org/10.1109/TAP.2006.875926
[16] S. Habib, M.F.U. Butt, and G.I. Kiani, Parametric analysis
of a band-pass FSS for double glazed soft-coated energy saving
glass, in:
2015 International Symposium on Antennas and
Propagation (IEEE, 2015) pp. 1–4,
https://ieeexplore.ieee.org/document/7447552
[17] B. Widenberg and J.V.R. Rodríguez,
Design of Energy
Saving Windows with High Transmission at 900 MHz and 1800 MHz,
Technical Report LUTEDX/(TEAT-7110/1-14/(2002), Vol. TEAT-7110
(Lund Institute of Technology, 2002),
[PDF]
[18] S.I. Sohail, G. Kiani, and K. Esselle, Parametric analysis
of RF and microwave transmission through single and multiple
layers of float glass, in:
Asia-Pacific Microwave Conference
2011 (IEEE, 2011) pp. 1454–1457,
https://ieeexplore.ieee.org/document/6174036
[19] B. Foulonneau, F. Gaudaire, and Y. Gabillet, Measurement
method of electromagnetic transmission loss of building
components using two reverberation chambers, Electron. Lett.
32(23),
2130–2131 (1996),
https://doi.org/10.1049/el:19961417
[20] Ž. Kancleris, G. Šlekas, and A. Matulis, Modeling of
two-dimensional electron gas sheet in FDTD method, IEEE Trans.
Antennas Propag.
61(2), 994–996 (2013),
https://doi.org/10.1109/TAP.2012.2225819
[21] P. Ragulis, P. Ängskog, R. Simniškis, B. Vallhagen, M.
Bäckström, and Ž. Kancleris, Shielding effectiveness of modern
energy-saving glass panes and windows, IEEE Trans. Antennas
Propag.
65(8), 4250–4258 (2017),
https://doi.org/10.1109/TAP.2017.2718223
[22] S.J. Orfanidis,
Electromagnetic Waves and Antennas
(Rutgers University, New Brunswick, NJ, 2002),
http://eceweb1.rutgers.edu/~orfanidi/ewa/
[23] S.I. Sohail, K.P. Esselle, and G. Kiani, Design of a
bandpass FSS on dual layer energy saving glass for improved RF
communication in modern buildings, in:
Proceedings of the
2012 IEEE International Symposium on Antennas and Propagation
(IEEE, 2012) pp. 1–2,
https://doi.org/10.1109/APS.2012.6348600