[PDF]    https://doi.org/10.3952/physics.v58i3.3813

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 254–260 (2018)


THE GROWTH, STRUCTURE AND LUMINESCENCE PROPERTIES OF ZnSe1-xSx MATERIALS
Olha G. Trubaievaa, Mykhailo A. Chaikab, and Alexander I. Lalayantsa
aInstitute for Scintillation Materials NASU, Nauki Ave. 60, 61072 Kharkov, Ukraine
bInstitute of Physics PAS, al. Lotników 32/46, PL-02-668 Warsaw, Poland
E-mail: trubaeva.olya@gmail.com
Received 2 December 2017; revised 19 February 2018; accepted 21 June 2018

ZnSe1-xSx crystals with a higher content of selenium or sulfur ions adopt, respectively, a wurtzite or sphalerite structure. Luminescent properties of ZnSe1-xSx crystals are determined by ternary VZnZniOSe complexes for crystals with a cubic (sphalerite) lattice, and by sulfur vacancies VS for crystals with a hexagonal (wurtzite) lattice. Light output of ZnSe1-xSx crystals increases with increasing the sulfur content up to x = 0.3 and reaches the value of light output observed for ‘classic scintillator’ ZnSe(Te). At the same time, the ZnSe1-xSx bulk crystals possess better thermal stability at the same energy of emitted photons (hν\nu ~ 2 eV) as compared to that of the ZnSe(Te) crystals.
Keywords: mixed crystals, ZnSe1-xSx, radiation detector, scintillator, X-ray induced luminescence
PACS: 78.20.-e

ZnSe1-xSx DARINIŲ AUGINIMAS, STRUKTŪRA IR LIUMINESCENCINĖS SAVYBĖS
Olha G. Trubaievaa, Mykhailo A. Chaikab, and Alexander I. Lalayantsa

aUkrainos nacionalinės mokslų akademijos Scintiliacinių medžiagų institutas, Charkovas, Ukraina
bLenkijos mokslų akademijos Fizikos institutas, Varšuva, Lenkija


References / Nuorodos

[1] I.B. Mizetskaya, Physical and Chemical Bases of Synthesis of Single Crystals of Semiconducting Solid Solutions of A2B6 Compound (Naukova Dumka, Kiev, 1986) [in Russian]
[2] V.M. Koshkin, A.Y. Dulfan, N.V. Ganina, V.D. Ryzhikov, L.P. Gal’chinetskii, and N.G. Starzhinskiy, Tellurium, sulfur, and oxygen isovalent impurities in ZnSe semiconductor, Funct. Mat. 9(3), 438–441 (2002),
[Abstract PDF]
[3] V.N. Tomashik, Semiconductor materials based on compounds AIIIBV, AIIBVI, AIVBVI, in: Inorganic Materials. V2. Materials and Technologies (Naukova Dumka, 2009) [in Russian]
[4] V.A. Litichevskyi, A.D. Opolonin, S.N. Galkin, A.I. Lalaiants, and E.F. Voronkin, A dual-energy X-ray detector on the basis of ZnSe(Al) and LGSO(Ce) composite scintillators, Instrum. Exp. Tech. 56(4), 436–443 (2013),
https://doi.org/10.1134/S0020441213040209
[5] M. Washiyama, K. Sato, and M. Aoki, Solution growth of ZnS, ZnSe, CdS and their mixed compounds using tellurium as a solvent, J. Appl. Phys. 18(5), 869–872 (1979),
https://doi.org/10.1143/JJAP.18.869
[6] J.C. Wooley and B. Ray, Solid solution in AIIBVI tellurides, J. Phys. Chem. Solids 13(1–2), 151–153 (1960),
https://doi.org/10.1016/0022-3697(60)90135-9
[7] V.D. Ryzhikov, A.D. Opolonin, P.V. Pashko, V.M. Svishch, V.G. Volkov, E.K. Lysetskaya, and C. Smith, Instruments and detectors on the base of scintillator crystals ZnSe (Te), CWO, CsI (Tl) for systems of security and customs inspection systems, Nucl. Instrum. Methods Phys. Res. A 537(1–2), 424–430 (2005),
https://doi.org/10.1016/j.nima.2004.08.056
[8] A.G. Fischer, Preparation and properties of ZnS-type crystals from the melt, J. Electrochem. Soc. 106(9), 838–839 (1959),
https://doi.org/10.1149/1.2427507
[9] M.H. Karapet’yants, Chemical Thermodynamics (Khimiya, Moscow, 1975) [in Russian]
[10] U. Hotje, C. Rose, and M. Binnewies, Lattice constants and molar volume in the system ZnS, ZnSe, CdS, CdSe, Solid State Sci. 5(9), 1259–1262 (2003),
https://doi.org/10.1016/S1293-2558(03)00177-8
[11] K.A. Katrunov, A.L. Lalayants, V.N. Baumer, S.N. Galkin, L.P. Galchinetskii, and E.J. Brilyova, Peculiarities of scintillation materials based on ZnS–ZnTe solid solutions, Funct. Mat. 20(3), 384–389 (2013),
https://doi.org/10.15407/fm20.03.384
[12] R.C. Sharma and Y.A. Chang, Thermodynamic analysis and phase equilibria calculations for the Zn-Te, Zn-Se and Zn-S systems, J. Cryst. Growth 88(2), 193–204 (1988),
https://doi.org/10.1016/0022-0248(88)90276-X
[13] Y. Shirakawa and H. Kukimoto, The electron trap associated with an anion vacancy in ZnSe and ZnSxSe1–x, Solid State Commun. 34(5), 359–361 (1980),
https://doi.org/10.1016/0038-1098(80)90575-X
[14] S. Larach, R.E. Shrader, and C.F. Stocker, Anomalous variation of band gap with composition in zinc sulfo- and seleno-tellurides, Phys. Rev. 108(3), 587 (1957),
https://doi.org/10.1103/PhysRev.108.587
[15] N. Matsumura, M. Tsubokura, J. Saraie, and Y. Yodogawa, MBE growth of high quality lattice-matched ZnSxSe1-x on GaAs substrates, J. Cryst. Growth 86(1–4), 311–317 (1988),
https://doi.org/10.1016/0022-0248(90)90735-4
[16] B.J. Fitzpatrick, A review of the bulk growth of high band gap II–VI compounds, J. Cryst. Growth 86(1), 106–110 (1988),
https://doi.org/10.1016/0022-0248(90)90706-Q
[17] T. Homann, U. Hotje, M. Binnewies, A. Börger, K.D. Becker, and T. Bredow, Composition-dependent band gap in ZnSxSe1-x: a combined experimental and theoretical study, Solid State Sci. 8(1), 44–49 (2006),
https://doi.org/10.1016/j.solidstatesciences.2005.08.015
[18] N.G. Starzhinskiy, B.V. Grinyov, L.P. Gal’chinetskii, and V.D. Ryzhikov, The Scintillators Based Compounds AIIBVI. Preparation, Properties and Features of the Application (Institute for Single Crystals, Kharkov, 2007) [in Russian]
[19] P. Van Ben and P.T. Tue, The role of color luminescence centers Mn, Cu, Co in the semiconductors with wide band gap ZnS, ZnO and their applications, VNU J. Sci. Math. Phys. 24(4), 181–187 (2008),
[PDF]
[20] N.B. Singh, C.H. Su, B. Arnold, and F.S. Choa, Optical and morphological characteristics of zinc selenide-zinc sulfide solid solution crystals, Opt. Mater. 60, 474–480 (2016),
https://doi.org/10.1016/j.optmat.2016.08.031
[21] R.H. Hussein, O. Pagès, F. Firszt, A. Marasek, W. Paszkowicz, A. Maillard, and L. Broch, Near-forward Raman study of a phonon-polariton reinforcement regime in the Zn(Se, S) alloy, J. Appl. Phys. 116(8), 083511 (2014),
https://doi.org/10.1063/1.4893322
[22] R.H. Hussein, O. Pagès, S. Doyen-Schuler, H. Dicko, A.V. Postnikov, F. Firszt, and O. Gorochov, Percolation-type multi-phonon pattern of Zn (Se, S): Backward/forward Raman scattering and ab initio calculations, J. All. Comp. 644, 704–720 (2015),
https://doi.org/10.1016/j.jallcom.2015.04.078
[23] R.H. Hussein, O. Pagès, A. Polian, A.V. Postnikov, H. Dicko, F. Firszt, and P. Fertey, Pressure-induced phonon freezing in the ZnSeS II–VI mixed crystal: phonon–polaritons and ab initio calculations, J. Phys. Condens. Matter. 28(20), 205401 (2016),
https://doi.org/10.1088/0953-8984/28/20/205401
[24] I. Kikuma and M. Furukoshi, Formation of defects in zinc selenide crystals grown from the melt under argon pressure, J. Cryst. Growth 44(4), 467–472 (1978),
https://doi.org/10.1016/0022-0248(78)90012-X
[25] G.D. Watkins, Lattice Defects in II–VI Compounds (Institute of Physics, United Kingdom, 1976)
[26] H.A. Klasens, On the nature of fluorescent centers and traps in zinc sulfide, J. Electrochem. Soc. 100(2), 72–80 (1953),
https://doi.org/10.1149/1.2781086
[27] S. Kishida, K. Matsuura, H. Fukuma, F. Takeda, and I. Tsurumi, Optical absorption bands in neutron irradiated ZnSe and ZnS0.5Se0.5, Cryst. Phys. Status Solidi B, 113(1), K31–K33 (1982),
https://doi.org/10.1002/pssb.2221130150
[28] J.R. Cutter, G.J. Russell, and J. Woods, The growth and defect structure of single crystals of zinc selenide and zinc sulpho-selenide, J. Cryst. Growth 32(2), 179–188 (1976),
https://doi.org/10.1016/0022-0248(76)90030-0
[29] M. Aven and H.H. Woodbury, Purification of II–VI compounds by solvent extraction, Appl. Phys. Lett. 1(3), 53–54 (1962),
https://doi.org/10.1063/1.1777366
[30] V.P. Glushko and V.A. Medvedev, Thermal Constants of Substances (Hemisphere Publishing Company, New York, 1990)
[31] D. Freik and B. Volochanska, Temperature dependencies of the heat capacity of ZnS, ZnSe and ZnSe(Te) crystals, obtained from first principles, Chem. Met. Alloys 8, 1–4 (2015) [in Ukrainian, abstract in English],
[PDF]