[PDF]    https://doi.org/10.3952/physics.v58i3.3814

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 261–266 (2018)


 CHARGE CARRIER MOBILITY FLUCTUATIONS DUE TO THE CAPTURE–EMISSION PROCESS
Vilius Palenskis, Juozas Vyšniauskas, Justinas Glemža, and Jonas Matukas
Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio 3, 10222 Vilnius, Lithuania
E-mail: vilius.palenskis@ff.vu.lt
Received 6 December 2017; revised 26 January 2018; accepted 21 June 2018

It is shown that the free charge carrier capture–emission process causes both the charge carrier density and mobility fluctuations. In this report we present the calculation results in order to find how the capture–emission process affects the free charge carrier mobility and mobility fluctuations. The carrier mobility dependence on phonon, impurity and carrier–carrier scatterings, and the mobility dependence on the electric field and the energy gap variation due to the doping level were taken into account. It is also shown that fluctuations of the charge carrier density and mobility due to the capture–emission process are completely correlated, and that their relaxation times are the same as for the charge capture–emission process. The general expression for estimation of active capture centre density in the volume of a homogeneous sample from the low-frequency noise measurements is presented.
Keywords: low-frequency noise, charge carrier number and mobility fluctuations, defects, RTS, Lorentzian spectrum
PACS: 05.40.Ca, 07.50.Hp, 71.55.-i, 72.70+m

KRŪVININKŲ JUDRIO FLIUKTUACIJOS DĖL KRŪVININKŲ PAGAVIMO
Vilius Palenskis, Juozas Vyšniauskas, Justinas Glemža, Jonas Matukas

Vilniaus universiteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva

Naudojant Synopsis TCAD Sentaurus programą, apskaičiuotos krūvininkų judrio fliuktuacijos silicio kristale dėl krūvininkų pagavimo lokalizuotomis defektų būsenomis, atsižvelgiant į judrio priklausomybę nuo sklaidos gardelės virpesiais ir krūvininkų abipusės sklaidos, taip pat atsižvelgta į judrio priklausomybę nuo elektrinio lauko stiprio ir draudžiamosios energijos tarpo kitimo dėl krūvininkų tankio. Parodyta, kad dėl laisvųjų krūvininkų pagavimo susikuria net tik laisvųjų krūvininkų tankio, bet ir jų judrio fliuktuacijos. Šios fliuktuacijos yra visiškai koreliuotos, o jų relaksacijos trukmė lygi pagavimo reiškinio relaksacijos trukmei. Pateikta išraiška, kaip įvertinti pagavimo centrų tankį pagal žemadažnio triukšmo galios spektrinį tankį.

References / Nuorodos

[1] M.J. Kirton and M.J. Uren, Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/f) noise, Adv. Phys. 38, 367–468 (1989),
https://doi.org/10.1080/00018738900101122
[2] A.L. McWhorter, 1/f noise and germanium surface properties, in: Semiconductor Surface Physics, ed. R.H. Kingston (University of Pennsylvania Press, 1957) pp. 207–228,
http://www.upenn.edu/pennpress/book/1026.html
[3] M.B. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter, Rev. Mod. Phys. 60, 537–571 (1988),
https://doi.org/10.1103/RevModPhys.60.537
[4] M.S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge University Press, New York, 1996),
https://doi.org/10.1017/CBO9780511551666
[5] B. Pelegrini, One model of flicker, burst, and generation-recombination noises, Phys. Rev. B 24, 7071–7083 (1981),
https://doi.org/10.1103/PhysRevB.24.7071
[6] V. Palenskis, Flicker noise problem (review), Lith. J. Phys. 30, 107–152 (1990)
[7] B.K. Jones, Electrical noise as a measure of quality and reliability in electronic devices, Adv. Electron. Electron Phys. 87, 201–257 (1993),
https://doi.org/10.1016/S0065-2539(08)60017-7
[8] F.N. Hooge, Discussion of resent experiment on 1/f noise, Physica 60, 130–144 (1972),
https://doi.org/10.1016/0031-8914(72)90226-1
[9] F.H. Hooge, T.G.M. Kleinpenning, and L.K.J. Vandamme, Experimental studies on 1/f noise, Rep. Progr. Phys. 44, 479–532 (1981),
https://doi.org/10.1088/0034-4885/44/5/001
[10] F.H. Hooge and L.K.J. Vandamme, Lattice scattering causes 1/f noise, Phys. Lett. A 66, 315–316 (1978),
https://doi.org/10.1016/0375-9601(78)90249-9
[11] F.N. Hooge, 1/f noise sources, IEEE Trans. Electron Devices 41, 1926–1935 (1994),
https://doi.org/10.1109/16.333808
[12] L.K.J. Vandamme and F.H. Hooge, What do we certainly know about 1/f noise in MOSTs? IEEE Trans. Electron Devices 55, 3070–3085 (2008),
https://doi.org/10.1109/TED.2008.2005167
[13] F.H. Hooge, 1/f noise in semiconductors. Has anything been proved experimentally? In: Proceedings of the 7th Vilnius Conference on Fluctuation Phenomena in Physical Systems, ed. by V. Palenskis (VU Press, Vilnius, 1994) pp. 61–69
[14] F.H. Hooge, 1/f noise in semiconductor materials, in: Proceedings of the 13th International Conference on Noise in Physical Systems and 1/f Fluctuations, eds. V. Bareikis and R. Katilius (World Scientific, Singapore, 1995) pp. 8–13,
https://doi.org/10.1142/9789814532693
[15] V. Palenskis and K. Maknys, Nature of low-frequency noise in homogeneous semiconductors, Sci. Rept. 5, 18305 (2015),
https://doi.org/10.1038/srep18305
[16] V. Palenskis, The charge carrier capture–emission process – the main source of the low-frequency noise inhomogeneous semiconductors, Lith. J. Phys. 56, 200–206 (2016),
https://doi.org/10.3952/physics.v56i4.3416
[17] G. Masetti, M. Severi, and S. Solmi, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon, IEEE Trans. Electron Devices 30(7), 764–769 (1983),
https://doi.org/10.1109/T-ED.1983.21207
[18] A. Schenk, Advanced Physical Models for Silicon Device Simulation (Springer, Wien, 1998),
https://doi.org/10.1007/978-3-7091-6494-5
[19] C. Canali, G. Majni, R. Minder, and G. Ottaviani, Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature, IEEE Trans. Electron Devices 22(11), 1045–1047 (1975),
https://doi.org/10.1109/T-ED.1975.18267
[20] D.B.M. Klaassen, J.W. Slotboom, and H.C. de Graaff, Unified apparent bandgap narrowing in n- and p-type silicon, Solid State Electron. 35(2), 125–129 (1992),
https://doi.org/10.1016/0038-1101(92)90051-D
[21] C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, A review of some charge transport properties of silicon, Solid State Electron. 20, 77–89 (1977),
https://doi.org/10.1016/0038-1101(77)90054-5