,
Yulia O. Tykhonenko-Polishchuk
, Mykola M. Kulyk
,
Oleksandr V. Yelenich
, and Alexandr I. Tovstolytkin
Received 27 April 2018; revised 28 June 2018; accepted 15 October
2018
References
/
Nuorodos
[1] F.A. Harraz, A.A. Ismail, A.A. Al-Sayari, and A. Al-Hajry,
Novel
α-Fe
2O
3/polypyrrole
nanocomposite with enhanced photocatalytic performance, J.
Photochem. Photobiol. A
299, 18–24 (2015),
https://doi.org/10.1016/j.jphotochem.2014.11.001
[2] M.V. Murugendrappa and M.V.N. Ambika Prasad, Dielectric
spectroscopy of polypyrrole–
γ–Fe
2O
3
composites, Mater. Res. Bull.
41, 1364–1369 (2006),
https://doi.org/10.1016/j.materresbull.2005.12.011
[3] H. Zhao, M. Huang, J. Wu, L. Wang, and H. He, Preparation of
Fe
3O
4@PPy magnetic nanoparticles as
solid-phase extraction sorbents for preconcentration and
separation of phthalic acid esters in water by gas
chromatography–mass spectrometry, J. Chromatogr. B
1011,
33–44 (2016),
https://doi.org/10.1016/j.jchromb.2015.12.041
[4] C.I. Covaliu, I. Jitaru, G. Paraschiv, E. Vasile, S.S.
Biriş, L. Diamandescu, V. Ionita, and H. Iovu, Core–shell hybrid
nanomaterials based on CoFe
2O
4 particles
coated with PVP or PEG biopolymers for applications in
biomedicine, Powder Technol.
237, 415–426 (2013),
https://doi.org/10.1016/j.powtec.2012.12.037
[5] R.N. Singh, B. Lal, and M. Malviya, Electrocatalytic
activity of electrodeposited composite films of polypyrrole and
CoFe
2O
4 nanoparticles towards oxygen
reduction reaction, Electrochim. Acta
49, 4605–4612
(2004),
https://doi.org/10.1016/j.electacta.2004.05.015
[6] I.M. Resta, G. Horwitz, M.L.M. Elizalde, G.A. Jorge, F.V.
Molina, and P.S. Antonel, Magnetic and conducting properties of
composites of conducting polymers and ferrite nanoparticles,
IEEE T. Magn.
49, 4598–4601 (2013),
https://doi.org/10.1109/TMAG.2013.2259582
[7] P.S. Antonel, F.M. Berhó, G. Jorge, and F.V. Molina,
Magnetic composites of CoFe
2O
4
nanoparticles in a poly(aniline) matrix: enhancement of
remanence ratio and coercivity, Synth. Met.
199, 292–302
(2015),
https://doi.org/10.1016/j.synthmet.2014.12.003
[8] S. Geetha, C.R.K. Rao, M. Vijayan, and D.C. Trivedi,
Biosensing and drug delivery by polypyrrole, Anal. Chim. Acta
568,
119–125 (2006),
https://doi.org/10.1016/j.aca.2005.10.011
[9] J.M. Fonner, L. Forciniti, H. Nguyen, J. Byrne, Y.F. Kou, J.
Syeda-Nawaz, and C.E. Schmidt, Biocompatibility implications of
polypyrrole synthesis techniques, Biomed. Mater.
3,
034124 (2008),
https://doi.org/10.1088/1748-6041/3/3/034124
[10] B.D. Plouffe, S.K. Murthy, and L.H. Lewis, Fundamentals and
application of magnetic particles in cell isolation and
enrichment: a review, Rep. Prog. Phys.
78, 016601
(2015),
https://doi.org/10.1088/0034-4885/78/1/016601
[11] R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, Magnetic
particle hyperthermia: nanoparticle magnetism and materials
development for cancer therapy, J. Phys. Condens. Matter
18,
S2919–S2934 (2006),
https://doi.org/10.1088/0953-8984/18/38/S26
[12] M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E.
Nel, F. Tamanoi, and J.I. Zink, Multifunctional inorganic
nanoparticles for imaging, targeting, and drug delivery, ACS
Nano
2(5), 889–896 (2008),
https://doi.org/10.1021/nn800072t
[13] D.-H. Kim, D.E. Nikles, D.T. Johnson, and C.S. Brazel, Heat
generation of aqueously dispersed CoFe
2O
4
nanoparticles as heating agents for magnetically activated drug
delivery and hyperthermia, J. Magn. Magn. Mater
320,
2390–2396 (2008),
https://doi.org/10.1016/j.jmmm.2008.05.023
[14] F. Yu, L. Zhang, Y. Huang, K. Sun, A.E. David, and V.C.
Yang, The magnetophoretic mobility and superparamagnetism of
core-shell iron oxide nanoparticles with dual targeting and
imaging functionality, Biomaterials
31, 5842–5848
(2010),
https://doi.org/10.1016/j.biomaterials.2010.03.072
[15] N. Kohler, C. Sun, J. Wang, and M. Zhang,
Methotrexate-modified superparamagnetic nanoparticles and their
intercellular uptake into human cancer cells, Langmuir
21,
8858–8864 (2005),
https://doi.org/10.1021/la0503451
[16] H. Lee, E. Lee, D.K. Kim, N.K. Jang, Y.Y. Jeong, and S.
Jon, Antibiofouling polymer-coated superparamagnetic iron oxide
nanoparticles as potential magnetic resonance contrast agents
for in vivo cancer imaging, J. Am. Chem. Soc.
128,
7383–7389 (2006),
https://doi.org/10.1021/ja061529k
[17] E.Q. Song, J. Hu, C.Y. Wen, Z.Q. Tian, X. Yu, Z.L. Zhang,
Y.B. Shi, and D.W. Pang, Fluorescent-magnetic-biotargeting
multifunctional nanobioprobes for detecting and isolating
multiple types of tumor cells, ACS Nano
5(2), 761–770
(2011),
https://doi.org/10.1021/nn1011336
[18] E.V. Groman, J.C. Bouchard, C.P. Reinhardt, and D.E.
Vaccaro, Ultrasmall mixed ferrite colloids as multidimensional
magnetic resonance imaging, cell labeling, and cell sorting
agents, Bioconjugate Chem.
18(6), 1763–1771 (2007),
https://doi.org/10.1021/bc070024w
[19] M. Pilloni, J. Nicolas, V. Marsaud, K. Bouchemal, F.
Frongia, A. Scano, G. Ennas, and C. Dubernet, PEGylation and
preliminary biocompatibility evaluation of magnetite–silica
nanocomposites obtained by high energy ball milling, Int. J.
Pharmaceut.
401, 103–112 (2010),
https://doi.org/10.1016/j.ijpharm.2010.09.010
[20] R.Y. Hong, J.H. Li, J.M. Qu, J.J. Chen, and H.Z. Li,
Preparation and characterization of magnetite/dextran
nanocomposite as a precursor of magnetic fluid, Chem. Eng. J.
150,
572–580 (2009),
https://doi.org/10.1016/j.cej.2009.03.034
[21] I. Sharifi, H. Shokrollahi, and S. Amiri, Ferrite-based
magnetic nanofluids used in hyperthermia applications, J. Magn.
Magn. Mat.
324(6), 903–915 (2012),
https://doi.org/10.1016/j.jmmm.2011.10.017
[22] R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, Magnetic
particle hyperthermia: nanoparticle magnetism and materials
development for cancer therapy, J. Phys. Condens. Matter
18(38),
S2919–S2934 (2006),
https://doi.org/10.1088/0953-8984/18/38/S26
[23] V. Pašukonienė, A. Mlynska, S. Steponkienė, V. Poderys, M.
Matulionytė, V. Karabanovas, U. Statkutė, R. Purvinienė, J.A.
Kraśko, A. Jagminas, M. Kurtinaitienė, M. Strioga, and R.
Rotomskis, Accumulation and biological effects of cobalt ferrite
nanoparticles in human pancreatic and ovarian cancer cells,
Medicina
50, 237–244 (2014),
https://doi.org/10.1016/j.medici.2014.09.009
[24] N. Sanpo, C.C. Berndt, C. Wen, and J. Wang. Transition
metal-substituted cobalt ferrite nanoparticles for biomedical
applications, Acta Biomater.
9, 5830–5837 (2013),
https://doi.org/10.1016/j.actbio.2012.10.037
[25] R. Žalneravičius, A. Paškevičius, M. Kurtinaitienė, and A.
Jagminas, Size-dependent antimicrobial properties of the cobalt
ferrite nanoparticles, J. Nanopart. Res.
18, 300-1–10
(2016),
https://doi.org/10.1007/s11051-016-3612-x
[26] V. Bėčytė, K. Mažeika, T. Rakickas, and V. Pakštas, Study
of magnetic and structural properties of cobalt-manganese
ferrite nanoparticles obtained by mechanochemical synthesis,
Mat. Chem. Phys.
172, 6–10 (2016),
https://doi.org/10.1016/j.matchemphys.2015.11.029
[27] S. Solopan, А. Belous, A. Yelenich, L. Bubnovskaya, A.
Kovelskaya, A. Podoltsev, I. Kondratenko, and S. Osinsky,
Nanohyperthermia of malignant tumors. I. Lanthanum-strontium
manganite magnetic fluid as potential inducer of tumor
hyperthermia, Exp. Oncol.
33, 130–135 (2011),
[HTML]
[28] M. Veverka, K. Zaveta, O. Kaman, P. Veverka, K. Knizek, E.
Pollert, M. Burian, and P. Kaspar, Magnetic heating by
silica-coated Co–Zn ferrite particles, J. Phys. D
47(6),
065503 (2014),
https://doi.org/10.1088/0022-3727/47/6/065503
[29] K. Mažeika, A. Mikalauskaitė, and A. Jagminas, Influence of
interactions to the properties of ultrasmall CoFe
2O
4
nanoparticles estimated by Mössbauer study, J. Magn. Magn.
Mater.
389, 21–26 (2015),
https://doi.org/10.1016/j.jmmm.2015.04.044
[30] S.J. Kim, S.W. Lee, and C.S. Kim, Mössbauer studies on
exchange interactions in CoFe
2O
4, Jpn. J.
Appl. Phys.
40, 4897–4902 (2001),
https://doi.org/10.1143/JJAP.40.4897
[31] B. Tian and G. Zerbi, Lattice-dynamics and vibrational
spectra of polypyrrole, J. Chem. Phys.
92(6), 3886–3891
(1990),
https://doi.org/10.1063/1.457794
[32] S. Chikazumi,
Physics of Ferromagnetism (Oxford
University Press, New York, 2005) pp. 270–273,
https://global.oup.com/academic/product/physics-of-ferromagnetism-2e-9780199564811
[33] A. Pradeep, P. Priyadharsini, and G. Chandrasekaran,
Structural, magnetic and electrical properties of
nanocrystalline zinc ferrite, J. Alloy. Compd.
509(9),
3917–3923 (2011),
https://doi.org/10.1016/j.jallcom.2010.12.168
[34] V.M. Kalita, A.I. Tovstolytkin, S.M. Ryabchenko, O.V.
Yelenich, S.O. Solopan, and A.G. Belous, Mechanisms of AC losses
in magnetic fluids based on substituted manganites, Phys. Chem.
Chem. Phys.
17, 18087–18097 (2015),
https://doi.org/10.1039/C5CP02822A
[35] S. Bedanta and W. Kleemann, Superparamagnetism, J. Phys. D
42(1), 013001 (2008),
https://doi.org/10.1088/0022-3727/42/1/013001
[36] S.A. Majetich and M. Sachan, Magnetostatic interactions in
magnetic nanoparticle assemblies: energy, time and length
scales, J. Phys. D
39, R407–R422 (2006),
https://doi.org/10.1088/0022-3727/39/21/R02
[37] C. Vázquez-Vázquez, M.A. López-Quintela, M.C. Buján-Núñez,
and J. Rivas, Finite size and surface effects on the magnetic
properties of cobalt ferrite nanoparticles, J. Nanopart. Res.
13(4),
1663–1676 (2011),
https://doi.org/10.1007/s11051-010-9920-7
[38] G. Herzer, Nanocrystalline soft magnetic materials, Phys.
Scripta
49A, 307–314 (1993),
https://doi.org/10.1088/0031-8949/1993/T49A/054
[39] W.C. Nunes, L.M. Socolovsky, J.C. Denardin, F. Cebollada,
A.L. Brandl, and M. Knobel, Role of magnetic interparticle
coupling on the field dependence of the superparamagnetic
relaxation time, Phys. Rev. B
72, 212413-1–4 (2005),
https://doi.org/10.1103/PhysRevB.72.212413
[40] J. Carrey, B. Mehdaoui, and M. Respaud, Simple models for
dynamic hysteresis loop calculations of magnetic single-domain
nanoparticles: Application to magnetic hyperthermia
optimization, J. Appl. Phys.
109(8), 083921 (2011),
https://doi.org/10.1063/1.3551582
[41] B. Mehdaoui, A. Meffre, J. Carrey, S. Lachaize, L.M.
Lacroix, M. Gougeon, B. Chaudret, and M. Respaud, Optimal size
of nanoparticles for magnetic hyperthermia: A combined
theoretical and experimental study, Adv. Funct. Mater.,
21(23),
4573–4581 (2011),
https://doi.org/10.1002/adfm.201101243