[PDF]    https://doi.org/10.3952/physics.v58i3.3815

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 267–276 (2018)


COMPARISON BETWEEN MAGNETIC PROPERTIES OF CoFe2O4 AND CoFe2O4/POLYPYRROLE NANOPARTICLES
Kęstutis Mažeikaa, Violeta Bėčytėa, Yulia O. Tykhonenko-Polishchukb, Mykola M. Kulykc, Oleksandr V. Yelenichd, and Alexandr I. Tovstolytkinb
aState Research Institute Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
bInstitute of Magnetism of the NAS of Ukraine and MES of Ukraine, 36-b Vernadsky Blvd., 03142 Kyiv, Ukraine
cInstitute of Physics of the NAS of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine
dV.I. Vernadskii Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34 Palladina Ave., 03142 Kyiv, Ukraine
E-mail: kestutis.mazeika@ftmc.lt
Received 27 April 2018; revised 28 June 2018; accepted 15 October 2018

CoFe2O4/polypyrrole composite nanoparticles were synthesized using a high energy ball mill. Mössbauer and Fourier transform infrared spectroscopies, magnetization measurements and transmission electron microscopy were used for the characterization of samples. Specific loss power (SLP) was determined by exposing nanoparticles to an alternating magnetic field. Some changes in coercivity were observed and explained comparing CoFe2O4 nanoparticles with CoFe2O4/polypyrrole composite nanoparticles.
Keywords: nanocomposites, magnetic materials, hyperthermia, ferrite
PACS: 62.23.Pq, 75.50.Tt, 76.80.+y

CoFe2O4 IR CoFe2O4/POLIPIROLIO NANODALELIŲ MAGNETINIŲ SAVYBIŲ PALYGINIMAS
Kęstutis Mažeikaa, Violeta Bėčytėa, Yulia O. Tykhonenko-Polishchukb, Mykola M. Kulykc, Oleksandr V. Yelenichd, Alexandr I. Tovstolytkinb

aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bNMA ir ŠMM Magnetizmo institutas, Kijevas, Ukraina
cŠMM Fizikos institutas, Kijevas, Ukraina
dŠMM Bendrosios ir neorganinės chemijos V.I. Vernadskio institutas, Kijevas, Ukraina

CoFe2O4/polipirolio kompozitinės nanodalelės susintetintos pasitelkus planetarinį didelės energijos rutulinį malūną. Mesbauerio ir FTI spektroskopijos, magnetiniai matavimai ir peršviečianti elektroninė mikroskopija buvo panaudoti susintetintų medžiagų struktūrinėms ir magnetinėms savybėms nustatyti. Išsiskirianti specifinė nuostolių galia hipertermijai nustatyta veikiant nanodaleles 300 kHz dažnio ir 124 Oe amplitudės kintamu magnetiniu lauku. Lyginant CoFe2O4 ir CoFe2O4/polipirolio kompozitinių nanodalelių histerezės kilpas buvo pastebėti koercinės jėgos pokyčiai, paaiškinami dėl polipirolio įtakos pakitusia nanodalelių sąveika.

References / Nuorodos

[1] F.A. Harraz, A.A. Ismail, A.A. Al-Sayari, and A. Al-Hajry, Novel α-Fe2O3/polypyrrole nanocomposite with enhanced photocatalytic performance, J. Photochem. Photobiol. A 299, 18–24 (2015),
https://doi.org/10.1016/j.jphotochem.2014.11.001
[2] M.V. Murugendrappa and M.V.N. Ambika Prasad, Dielectric spectroscopy of polypyrrole–γ–Fe2O3 composites, Mater. Res. Bull. 41, 1364–1369 (2006),
https://doi.org/10.1016/j.materresbull.2005.12.011
[3] H. Zhao, M. Huang, J. Wu, L. Wang, and H. He, Preparation of Fe3O4@PPy magnetic nanoparticles as solid-phase extraction sorbents for preconcentration and separation of phthalic acid esters in water by gas chromatography–mass spectrometry, J. Chromatogr. B 1011, 33–44 (2016),
https://doi.org/10.1016/j.jchromb.2015.12.041
[4] C.I. Covaliu, I. Jitaru, G. Paraschiv, E. Vasile, S.S. Biriş, L. Diamandescu, V. Ionita, and H. Iovu, Core–shell hybrid nanomaterials based on CoFe2O4 particles coated with PVP or PEG biopolymers for applications in biomedicine, Powder Technol. 237, 415–426 (2013),
https://doi.org/10.1016/j.powtec.2012.12.037
[5] R.N. Singh, B. Lal, and M. Malviya, Electrocatalytic activity of electrodeposited composite films of polypyrrole and CoFe2O4 nanoparticles towards oxygen reduction reaction, Electrochim. Acta 49, 4605–4612 (2004),
https://doi.org/10.1016/j.electacta.2004.05.015
[6] I.M. Resta, G. Horwitz, M.L.M. Elizalde, G.A. Jorge, F.V. Molina, and P.S. Antonel, Magnetic and conducting properties of composites of conducting polymers and ferrite nanoparticles, IEEE T. Magn. 49, 4598–4601 (2013),
https://doi.org/10.1109/TMAG.2013.2259582
[7] P.S. Antonel, F.M. Berhó, G. Jorge, and F.V. Molina, Magnetic composites of CoFe2O4 nanoparticles in a poly(aniline) matrix: enhancement of remanence ratio and coercivity, Synth. Met. 199, 292–302 (2015),
https://doi.org/10.1016/j.synthmet.2014.12.003
[8] S. Geetha, C.R.K. Rao, M. Vijayan, and D.C. Trivedi, Biosensing and drug delivery by polypyrrole, Anal. Chim. Acta 568, 119–125 (2006),
https://doi.org/10.1016/j.aca.2005.10.011
[9] J.M. Fonner, L. Forciniti, H. Nguyen, J. Byrne, Y.F. Kou, J. Syeda-Nawaz, and C.E. Schmidt, Biocompatibility implications of polypyrrole synthesis techniques, Biomed. Mater. 3, 034124 (2008),
https://doi.org/10.1088/1748-6041/3/3/034124
[10] B.D. Plouffe, S.K. Murthy, and L.H. Lewis, Fundamentals and application of magnetic particles in cell isolation and enrichment: a review, Rep. Prog. Phys. 78, 016601 (2015),
https://doi.org/10.1088/0034-4885/78/1/016601
[11] R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, J. Phys. Condens. Matter 18, S2919–S2934 (2006),
https://doi.org/10.1088/0953-8984/18/38/S26
[12] M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, and J.I. Zink, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery, ACS Nano 2(5), 889–896 (2008),
https://doi.org/10.1021/nn800072t
[13] D.-H. Kim, D.E. Nikles, D.T. Johnson, and C.S. Brazel, Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia, J. Magn. Magn. Mater 320, 2390–2396 (2008),
https://doi.org/10.1016/j.jmmm.2008.05.023
[14] F. Yu, L. Zhang, Y. Huang, K. Sun, A.E. David, and V.C. Yang, The magnetophoretic mobility and superparamagnetism of core-shell iron oxide nanoparticles with dual targeting and imaging functionality, Biomaterials 31, 5842–5848 (2010),
https://doi.org/10.1016/j.biomaterials.2010.03.072
[15] N. Kohler, C. Sun, J. Wang, and M. Zhang, Methotrexate-modified superparamagnetic nanoparticles and their intercellular uptake into human cancer cells, Langmuir 21, 8858–8864 (2005),
https://doi.org/10.1021/la0503451
[16] H. Lee, E. Lee, D.K. Kim, N.K. Jang, Y.Y. Jeong, and S. Jon, Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging, J. Am. Chem. Soc. 128, 7383–7389 (2006),
https://doi.org/10.1021/ja061529k
[17] E.Q. Song, J. Hu, C.Y. Wen, Z.Q. Tian, X. Yu, Z.L. Zhang, Y.B. Shi, and D.W. Pang, Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells, ACS Nano 5(2), 761–770 (2011),
https://doi.org/10.1021/nn1011336
[18] E.V. Groman, J.C. Bouchard, C.P. Reinhardt, and D.E. Vaccaro, Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents, Bioconjugate Chem. 18(6), 1763–1771 (2007),
https://doi.org/10.1021/bc070024w
[19] M. Pilloni, J. Nicolas, V. Marsaud, K. Bouchemal, F. Frongia, A. Scano, G. Ennas, and C. Dubernet, PEGylation and preliminary biocompatibility evaluation of magnetite–silica nanocomposites obtained by high energy ball milling, Int. J. Pharmaceut. 401, 103–112 (2010),
https://doi.org/10.1016/j.ijpharm.2010.09.010
[20] R.Y. Hong, J.H. Li, J.M. Qu, J.J. Chen, and H.Z. Li, Preparation and characterization of magnetite/dextran nanocomposite as a precursor of magnetic fluid, Chem. Eng. J. 150, 572–580 (2009),
https://doi.org/10.1016/j.cej.2009.03.034
[21] I. Sharifi, H. Shokrollahi, and S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications, J. Magn. Magn. Mat. 324(6), 903–915 (2012),
https://doi.org/10.1016/j.jmmm.2011.10.017
[22] R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, J. Phys. Condens. Matter 18(38), S2919–S2934 (2006),
https://doi.org/10.1088/0953-8984/18/38/S26
[23] V. Pašukonienė, A. Mlynska, S. Steponkienė, V. Poderys, M. Matulionytė, V. Karabanovas, U. Statkutė, R. Purvinienė, J.A. Kraśko, A. Jagminas, M. Kurtinaitienė, M. Strioga, and R. Rotomskis, Accumulation and biological effects of cobalt ferrite nanoparticles in human pancreatic and ovarian cancer cells, Medicina 50, 237–244 (2014),
https://doi.org/10.1016/j.medici.2014.09.009
[24] N. Sanpo, C.C. Berndt, C. Wen, and J. Wang. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications, Acta Biomater. 9, 5830–5837 (2013),
https://doi.org/10.1016/j.actbio.2012.10.037
[25] R. Žalneravičius, A. Paškevičius, M. Kurtinaitienė, and A. Jagminas, Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles, J. Nanopart. Res. 18, 300-1–10 (2016),
https://doi.org/10.1007/s11051-016-3612-x
[26] V. Bėčytė, K. Mažeika, T. Rakickas, and V. Pakštas, Study of magnetic and structural properties of cobalt-manganese ferrite nanoparticles obtained by mechanochemical synthesis, Mat. Chem. Phys. 172, 6–10 (2016),
https://doi.org/10.1016/j.matchemphys.2015.11.029
[27] S. Solopan, А. Belous, A. Yelenich, L. Bubnovskaya, A. Kovelskaya, A. Podoltsev, I. Kondratenko, and S. Osinsky, Nanohyperthermia of malignant tumors. I. Lanthanum-strontium manganite magnetic fluid as potential inducer of tumor hyperthermia, Exp. Oncol. 33, 130–135 (2011),
[HTML]
[28] M. Veverka, K. Zaveta, O. Kaman, P. Veverka, K. Knizek, E. Pollert, M. Burian, and P. Kaspar, Magnetic heating by silica-coated Co–Zn ferrite particles, J. Phys. D 47(6), 065503 (2014),
https://doi.org/10.1088/0022-3727/47/6/065503
[29] K. Mažeika, A. Mikalauskaitė, and A. Jagminas, Influence of interactions to the properties of ultrasmall CoFe2O4 nanoparticles estimated by Mössbauer study, J. Magn. Magn. Mater. 389, 21–26 (2015),
https://doi.org/10.1016/j.jmmm.2015.04.044
[30] S.J. Kim, S.W. Lee, and C.S. Kim, Mössbauer studies on exchange interactions in CoFe2O4, Jpn. J. Appl. Phys. 40, 4897–4902 (2001),
https://doi.org/10.1143/JJAP.40.4897
[31] B. Tian and G. Zerbi, Lattice-dynamics and vibrational spectra of polypyrrole, J. Chem. Phys. 92(6), 3886–3891 (1990),
https://doi.org/10.1063/1.457794
[32] S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, New York, 2005) pp. 270–273,
https://global.oup.com/academic/product/physics-of-ferromagnetism-2e-9780199564811
[33] A. Pradeep, P. Priyadharsini, and G. Chandrasekaran, Structural, magnetic and electrical properties of nanocrystalline zinc ferrite, J. Alloy. Compd. 509(9), 3917–3923 (2011),
https://doi.org/10.1016/j.jallcom.2010.12.168
[34] V.M. Kalita, A.I. Tovstolytkin, S.M. Ryabchenko, O.V. Yelenich, S.O. Solopan, and A.G. Belous, Mechanisms of AC losses in magnetic fluids based on substituted manganites, Phys. Chem. Chem. Phys. 17, 18087–18097 (2015),
https://doi.org/10.1039/C5CP02822A
[35] S. Bedanta and W. Kleemann, Superparamagnetism, J. Phys. D 42(1), 013001 (2008),
https://doi.org/10.1088/0022-3727/42/1/013001
[36] S.A. Majetich and M. Sachan, Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time and length scales, J. Phys. D 39, R407–R422 (2006),
https://doi.org/10.1088/0022-3727/39/21/R02
[37] C. Vázquez-Vázquez, M.A. López-Quintela, M.C. Buján-Núñez, and J. Rivas, Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles, J. Nanopart. Res. 13(4), 1663–1676 (2011),
https://doi.org/10.1007/s11051-010-9920-7
[38] G. Herzer, Nanocrystalline soft magnetic materials, Phys. Scripta 49A, 307–314 (1993),
https://doi.org/10.1088/0031-8949/1993/T49A/054
[39] W.C. Nunes, L.M. Socolovsky, J.C. Denardin, F. Cebollada, A.L. Brandl, and M. Knobel, Role of magnetic interparticle coupling on the field dependence of the superparamagnetic relaxation time, Phys. Rev. B 72, 212413-1–4 (2005),
https://doi.org/10.1103/PhysRevB.72.212413
[40] J. Carrey, B. Mehdaoui, and M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization, J. Appl. Phys. 109(8), 083921 (2011),
https://doi.org/10.1063/1.3551582
[41] B. Mehdaoui, A. Meffre, J. Carrey, S. Lachaize, L.M. Lacroix, M. Gougeon, B. Chaudret, and M. Respaud, Optimal size of nanoparticles for magnetic hyperthermia: A combined theoretical and experimental study, Adv. Funct. Mater., 21(23), 4573–4581 (2011),
https://doi.org/10.1002/adfm.201101243