[PDF]    https://doi.org/10.3952/physics.v58i3.3816

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 58, 277–282 (2018)


REGION DEPENDENT 13C, 15N, 18O ISOTOPE RATIOS IN THE COW MILK
Andrius Garbarasa,b, Raminta Skipitytėa, Aleksey Meliascheniac, Tatiana Senchenkoc, Tatiana Smoliakc, Maria Ivankoc, Justina Šapolaitėa, Žilvinas Ežerinskisa, and Vidmantas Remeikisa
aMass Spectrometry Laboratory, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
bInstitute of Chemical Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
cMeat and Dairy Industry Institute, Partizanskiy Prospect 172, BY-220075 Minsk, Republic of Belarus
E-mail: andrius.garbaras@ftmc.lt
Received 17 January 2018; revised 23 February 2018; accepted 21 June 2018

We present measurements of stable carbon, nitrogen and oxygen isotope ratio values in cow milk, forage and drinking water collected in Belarus. Milk, water and forage were sampled in Brest, Gomel, Grodno, Minsk and Mogilev regions during summer and winter seasons. δ13C and δ15N values in dried milk samples ranged from –30.2 to – 20.0‰ and from +3.63 to +5.66‰, respectively. The lowest δ13C values were obtained in the Mogilev region in summer. δ18O values in drinking water were quite constant (δ18O = +9.83±0.63‰), but the δ18O pattern in milk water changed across the regions.
Keywords: isotope ratio mass spectrometry, milk isotope analysis, water isotope analysis
PACS: 92.40.kc, 91.67.Rx

13C, 15N, 18O IZOTOPŲ SANTYKIS SKIRTINGŲ REGIONŲ KARVĖS PIENE
Andrius Garbarasa,b, Raminta Skipitytėa, Aleksey Meliascheniac, Tatiana Senchenkoc, Tatiana Smoliakc, Maria Ivankoc, Justina Šapolaitėa, Žilvinas Ežerinskisa, Vidmantas Remeikisa

aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bVilniaus universiteto Cheminės fizikos institutas, Vilnius, Lietuva
cMėsos ir pieno pramonės institutas, Minskas, Baltarusija

Darbe tirta stabilių anglies ir azoto izotopų santykio verčių karvės piene ir pašaruose, taip pat deguonies izotopų santykio verčių geriamajame vandenyje ir karvės pieno vandenyje, kaita. Pienas, vanduo ir pašarai buvo renkami vasaros ir žiemos sezonais – Bresto, Gomelio, Gardino, Minsko ir Mogiliovo regionuose (Baltarusija). δ13C ir δ15N vertės piene kito atitinkamai nuo –30,2 iki –20,0 ‰ ir nuo +3,63 iki +5,66 ‰. Deguonies izotopų santykio vertės geriamajame vandenyje buvo apie δ18O = +9,83±0,63 ‰. Mažiausios δ13C vertės piene buvo nustatytos vasaros laikotarpiu Mogiliovo regione. Geriamojo vandens δ18O vertės kito mažai, o pieno vandens δ18O vertės įvairiuose regionuose buvo skirtingos.

References / Nuorodos

[1] A.M.L. Karlson, J. Duberg, N.H. Motwani, H. Hogfors, I. Klawonn, H. Ploug, J.B. Sveden, A. Garbaras, B. Sundelin, S. Hajdu, U. Larsson, R. Elmgren, and E. Gorokhova, Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs, Ambio 44, S413–S426 (2015),
https://doi.org/10.1007/s13280-015-0660-x
[2] V. Rakauskas, E.S. Šidagytė, R. Butkus, and A. Garbaras, Effect of the invasive New Zealand mud snail (Potamopyrgus antipodarum) on the littoral macroinvertebrate community in a temperate mesotrophic lake, Mar. Freshwater Res. 69, 155–166 (2018),
https://doi.org/10.1071/MF17059
[3] D. Ceburnis, A. Masalaite, J. Ovadnevaite, A. Garbaras, V. Remeikis, W. Maenhaut, M. Claeys, J. Sciare, D. Baisnee, and C.D. O'Dowd, Stable isotopes measurements reveal dual carbon pools contributing to organic matter enrichment in marine aerosol, Sci. Rep. 6, 36675 (2016),
https://doi.org/10.1038/srep36675
[4] I. Garbarienė, J. Šapolaitė, A. Garbaras, Ž. Ežerinskis, M. Pocevičius, L. Krikščikas, A. Plukis, and V. Remeikis, Origin identification of carbonaceous aerosol particles by carbon isotope ratio analysis, Aerosol Air Qual. Res. 16, 1356–1365 (2016),
https://doi.org/10.4209/aaqr.2015.07.0443
[5] G. Piličiauskas, R. Jankauskas, G. Piličiauskienė, and T. Dupras, Reconstructing Subneolithic and Neolithic diets of the inhabitants of the SE Baltic coast (3100–2500 cal BC) using stable isotope analysis, Archaeol. Anthropol. Sci. 9, 1421–1437 (2017),
https://doi.org/10.1007/s12520-017-0463-z
[6] N. Krivachy, A. Rossmann, and H.-L. Schmidt, Potentials and caveats with oxygen and sulfur stable isotope analyses in authenticity and origin checks of food and food commodities, Food Control 48, 143–150 (2015),
https://doi.org/10.1016/j.foodcont.2014.06.002
[7] M. Nečemer, D. Potočnik, and N. Ogrinc, Discrimination between Slovenian cow, goat and sheep milk and cheese according to geographical origin using a combination of elemental content and stable isotope data, J. Food Compos. Anal. 52, 16–23 (2016),
https://doi.org/10.1016/j.jfca.2016.07.002
[8] F. Camin, M. Perini, G. Colombari, L. Bontempo, and G. Versini, Influence of dietary composition on the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of milk, Rapid Commun. Mass Spectrom. 22, 1690–1696 (2008),
https://doi.org/10.1002/rcm.3506
[9] B. Bahar, F.J. Monahan, A.P. Moloney, P. O'Kiely, C.M. Scrimgeour, and O. Schmidt, Alteration of the carbon and nitrogen stable isotope composition of beef by substitution of grass silage with maize silage, Rapid Commun. Mass Spectrom. 19, 1937–1942 (2005),
https://doi.org/10.1002/rcm.2007
[10] D.M. Post, Using stable isotopes to estimate trophic position: models, methods, and assumptions, Ecology 83, 703–718 (2002),
https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
[11] J.H. McCutchan, W.M. Lewis, C. Kendall, and C.C. McGrath, Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur, Oikos 102, 378–390 (2003),
https://doi.org/10.1034/j.1600-0706.2003.12098.x
[12] R. Skipitytė, A. Mašalaitė, A. Garbaras, R. Mickienė, O. Ragažinskienė, V. Baliukonienė, B. Bakutis, J. Šiugždaitė, S. Petkevičius, A.S. Maruška, and V. Remeikis, Stable isotope ratio method for the characterisation of the poultry house environment, Isot. Environ. Health Stud. 53, 243–260 (2017),
https://doi.org/10.1080/10256016.2016.1230609
[13] D.M. Post, C.A. Layman, D.A. Arrington, G. Takimoto, J. Quattrochi, and C.G. Montana, Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses, Oecologia 152, 179–189 (2007),
https://doi.org/10.1007/s00442-006-0630-x
[14] C. Ek, A.M.L. Karlson, S. Hansson, A. Garbaras, and E. Gorokhova, Stable isotope composition in Daphnia is modulated by growth, temperature, and toxic exposure: implications for trophic magnification factor assessment, Environ. Sci. Technol. 49, 6934–6942 (2015),
https://doi.org/10.1021/acs.est.5b00270
[15] K.A. Hobson and G. Koehler, On the use of stable oxygen isotope (δ18O) measurements for tracking avian movements in North America, Ecol. Evol. 5, 799–806 (2015),
https://doi.org/10.1002/ece3.1383
[16] G.J. Bowen, J.R. Ehleringer, L.A. Chesson, E. Stange, and T.E. Cerling, Stable isotope ratios of tap water in the contiguous United States, Water Resour. Res. 43(12), W03419 (2007),
https://doi.org/10.1029/2006WR005186
[17] F. Abeni, F. Petrera, M. Capelletti, A. Dal Pra, L. Bontempo, A. Tonon, and F. Camin, Hydrogen and oxygen stable isotope fractionation in body fluid compartments of dairy cattle according to season, farm, breed, and reproductive stage, PLOS ONE 10(5), e0127391 (2015),
https://doi.org/10.1371/journal.pone.0127391