Received 24 April 2018; revised 13 August 2018; accepted 15
October 2018
References
/
Nuorodos
[1] C.D. O’Dowd and T. Hoffmann, Coastal new particle formation:
a review of the current state-of-the-art, Environ. Chem.
2(4),
245 (2005),
https://doi.org/10.1071/EN05077
[2] G. Mordas, K. Plauškaitė, N. Prokopčiuk, V. Dudoitis, C.
Bozzetti, and V. Ulevičius, Observation of new particle
formation on Curonian Spit located between continental Europe
and Scandinavia, J. Aerosol Sci.
97, 38–55 (2016),
https://doi.org/10.1016/j.jaerosci.2016.03.002
[3] T.M. Ruuskanen, M. Kaasik, P.P. Aalto, U. Horrak, M. Vana,
M. Martensson, Y.J. Yoon, P. Keronen, G. Mordas, D. Ceburnis, et
al., Concentrations and fluxes of aerosol particles during the
LAPBIAT measurement campaign at Varrio field station, Atmos.
Chem. Phys.
7(14), 3683–3700 (2007),
https://doi.org/10.5194/acp-7-3683-2007
[4] M.D. Maso, A. Hyvarinen, M. Komppula, P. Tunved, V.-M.
Kerminen, H. Lihavainen, Y. Oviisanen, H.-C. Hansson, and M.
Kulmala, Annual and interannual variation in boreal forest
aerosol particle number and volume concentration and their
connection to particle formation, Tellus B
60(4),
495–508 (2008),
https://doi.org/10.1111/j.1600-0889.2008.00366.x
[5] T. Suni, M. Kulmala, A. Hirsikko, T. Bergman, L. Laakso,
P.P. Aalto, R. Leuning, H. Cleugh, S. Zegelin, D. Hughes, et
al., Formation and characteristics of ions and charged aerosol
particles in a native Australian Eucalypt forest, Atmos. Chem.
Phys.
8(1), 129–139 (2008),
https://doi.org/10.5194/acp-8-129-2008
[6] V. Vakkari, H. Laakso, M. Kulmala, A. Laaksonen, D. Mabaso,
M. Molefe, N. Kgabi, and L. Laakso, New particle formation
events in semi-clean South African savannah, Atmos. Chem. Phys.
11(7), 3333–3346 (2011),
https://doi.org/10.5194/acp-11-3333-2011
[7] M. Kanakidou, J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J.
Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes,
C.J. Nielsen, et al., Organic aerosol and global climate
modelling: a review, Atmos. Chem. Phys.
5(4), 1053–1123
(2005),
https://doi.org/10.5194/acp-5-1053-2005
[8] J. Kesselmeier, U. Kuhn, A. Wolf, M. Andreae, P. Ciccioli,
E. Brancaleoni, M. Frattoni, A. Guenther, J. Greenberg, P. De
Castro Vasconcellos, T. De Oliva, T. Tavares, and P. Artaxo,
Atmospheric volatile organic compounds (VOC) at a remote
tropical forest site in central Amazonia, Atmos. Environ.
34(24),
4063–4072 (2000),
https://doi.org/10.1016/S1352-2310(00)00186-2
[9] A. Kiendler-Scharr, J. Wildt, M.D. Maso, T. Hohaus, E.
Kleist, T.F. Mentel, R. Tillmann, R. Uerlings, U. Schurr, and A.
Wahner, New particle formation in forests inhibited by isoprene
emissions, Nature
461(7262), 381–384 (2009),
https://doi.org/10.1038/nature08292
[10] J.D. Allan, P.I. Williams, J. Najera, J.D. Whitehead, M.J.
Flynn, J.W. Taylor, D. Liu, E. Darbyshire, L.J. Carpenter, R.
Chance, S.J. Andrews, S.C. Hackenberg, and G. McFiggans, Iodine
observed in new particle formation events in the Arctic
atmosphere during ACCACIA, Atmos. Chem. Phys.
15(10),
5599–5609 (2015),
https://doi.org/10.5194/acp-15-5599-2015
[11] J.D. Cline and T.S. Bates, Dimethyl sulfide in the
Equatorial Pacific Ocean: A natural source of sulfur to the
atmosphere, Geophys. Res. Lett.
10(10), 949–952 (1983),
https://doi.org/10.1029/GL010i010p00949
[12] A.J. Pettibone,
Toward a Better Understanding of New
Particle Formation, PhD thesis (University of Iowa, 2009),
https://ir.uiowa.edu/etd/420/
[13] M. Kulmala, Atmospheric science: How particles nucleate and
grow, Science
302(5647), 1000–1001 (2003),
https://doi.org/10.1126/science.1090848
[14] M. Sipilä, T. Berndt, T. Petäjä, D. Brus, J. Vanhanen, F.
Stratmann, J. Patokoski, R.L. Mauldin, A.-P. Hyvärinen, H.
Lihavainen, and M. Kulmala, The role of sulfuric acid in
atmospheric Nucleation, Science
327(5970), 1243–1246
(2010),
https://doi.org/10.1126/science.1180315
[15] J. Gao, T. Wang, X. Zhou, W. Wu, and W. Wang, Measurement
of aerosol number size distributions in the Yangtze River delta
in China: Formation and growth of particles under polluted
conditions, Atmos. Environ.
43(4), 829–836 (2009),
https://doi.org/10.1016/j.atmosenv.2008.10.046
[16] Z.J. Wu, L. Poulain, W. Birmili, J. Grob, N. Niedermeier,
Z.B. Wang, H. Herrmann, and A. Wiedensohler, Some insights into
the condensing vapors driving new particle growth to CCN sizes
on the basis of hygroscopicity measurements, Atmos. Chem. Phys.
15(22), 13071–13083 (2015),
https://doi.org/10.5194/acp-15-13071-2015
[17] A. Hamed, W. Birmili, J. Joutsensaari, S. Mikkonen, A.
Asmi, B. Wehner, G. Spindler, A. Jaatinen, A. Wiedensohler, H.
Korhonen, K.E.J. Lehtinen, and A. Laaksonen, Changes in the
production rate of secondary aerosol particles in Central Europe
in view of decreasing SO
2 emissions between 1996 and
2006, Atmos. Chem. Phys.
10(3), 1071–1091 (2010),
https://doi.org/10.5194/acp-10-1071-2010
[18] B. Bonn and G.K. Moorgat, New particle formation during a-
and b-pinene oxidation by O
3, OH and NO
3,
and the influence of water vapour: particle size distribution
studies, Atmos. Chem. Phys.
2(3), 183–196 (2002),
https://doi.org/10.5194/acp-2-183-2002
[19] A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A.S.H.
Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D.V. Spracklen,
K.S. Carslaw, and U. Baltensperger, Evidence for the role of
organics in aerosol particle formation under atmospheric
conditions, Proc. Natl. Acad. Sci.
107(15), 6646–6651
(2010),
https://doi.org/10.1073/pnas.0911330107
[20] A. Wiedensohler, D.S. Covert, E. Swietlicki, P. Aalto, J.
Heintzenberg, and C. Leck, Occurrence of an ultrafine particle
mode less than 20 nm in diameter in the marine boundary layer
during Arctic summer and autumn, Tellus B
48(2), 213–222
(1996),
https://doi.org/10.3402/tellusb.v48i2.15887
[21] T. Nieminen, K.E.J. Lehtinen, and M. Kulmala, Sub-10 nm
particle growth by vapor condensation – effects of vapor
molecule size and particle thermal speed, Atmos. Chem. Phys.
10(20),
9773–9779 (2010),
https://doi.org/10.5194/acp-10-9773-2010
[22] T. Hussein, A. Puustinen, P.P. Aalto, J.M. Makela, K.
Hameri, and M. Kulmala, Urban aerosol number size distributions,
Atmos. Chem. Phys.
4(2), 391–411 (2004),
https://doi.org/10.5194/acp-4-391-2004
[23] V. Ulevičius, S. Byčenkienė, C. Bozzetti, A. Vlachou, K.
Plauškaitė, G. Mordas, V. Dudoitis, G. Abbaszade, V. Remeikis,
A. Garbaras, et al., Fossil and non-fossil source contributions
to atmospheric carbonaceous aerosols during extreme spring
grassland fires in Eastern Europe, Atmos. Chem. Phys.
16(9),
5513–5529 (2016),
https://doi.org/10.5194/acp-16-5513-2016
[24] R. Zhang, A. Khalizov, L. Wang, M. Hu, and W. Xu,
Nucleation and growth of nanoparticles in the atmosphere, Chem.
Rev.
112(3), 1957–2011 (2012),
https://doi.org/10.1021/cr2001756
[25] I. Riipinen, T. Yli-Juuti, J.R. Pierce, T. Petaja, D.R.
Worsnop, M. Kulmala, and N.M. Donahue, The contribution of
organics to atmospheric nanoparticle growth, Nat. Geosci.
5(7),
453–458 (2012),
https://doi.org/10.1038/ngeo1499
[26] A. Augustaitis, I. Augustaitienė, M. Baugarten, S.
Bičenkienė, R. Girgždienė, G. Kulbokas, E. Linkevičius, V.
Marozas, M. Mikalajūnas, G. Mordas, et al., Tree-ring formation
as an indicator of forest capacity to adapt to the main threats
of environmental changes in Lithuania, Sci. Total Environ.
615,
1247–1261 (2018),
https://doi.org/10.1016/j.scitotenv.2017.09.169
[27] A. Augustaitis, D. Šopauskienė, and I. Baužienė, Direct and
indirect effects of regional air pollution on tree crown
defoliation, Balt. For.
16(1), 23–34 (2010),
https://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&catid=12&id=41
[28] P.G. Gormley and M. Kennedy, Diffusion from a stream
flowing through a cylindrical tube, Proc. R. Ir. Acad. A
52,
163–169 (1948–1950),
https://www.jstor.org/stable/20488498
[29] M. Dal Maso, M. Kulmala, I. Riipinen, R. Wagner, T.
Hussein, P.P. Aalto, and K.E.J. Lehtinen, Formation and growth
of fresh atmospheric aerosols: eight years of aerosol size
distribution data from SMEAR II, Hyytiälä, Finland, Boreal Env.
Res.
10(October), 323–336 (2005),
[PDF]
[30] H.E. Manninen, T. Nieminen, E. Asmi, S. Gagne, S. Häkkinen,
K. Lehtipalo, P. Aalto, M. Vana, A. Mirme, S. Mirme, et al.,
EUCAARI ion spectrometer measurements at 12 European sites –
analysis of new particle formation events, Atmos. Chem. Phys.
10(16),
7907–7927 (2010),
https://doi.org/10.5194/acp-10-7907-2010
[31] M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri,
V.-M. Kerminen, W. Birmili, and P.H. McMurry, Formation and
growth rates of ultrafine atmospheric particles: a review of
observations, J. Aerosol Sci.
35(2), 143–176 (2004),
https://doi.org/10.1016/j.jaerosci.2003.10.003
[32] J. Pauraitė, G. Mordas, S. Byčenkienė, and V. Ulevičius,
Spatial and temporal analysis of organic and black carbon mass
concentrations in Lithuania, Atmosphere
6(8), 1229–1242
(2015),
https://doi.org/10.3390/atmos6081229
[33] A. Asmi, A. Wiedensohler, P. Laj, A.-M. Fjaeraa, K.
Sellegri, W. Birmili, E. Weingartner, U. Baltensperger, V.
Zdimal, N. Zikova, et al., Number size distributions and
seasonality of submicron particles in Europe 2008–2009, Atmos.
Chem. Phys.
11(11), 5505–5538 (2011),
https://doi.org/10.5194/acp-11-5505-2011
[34] K. Plauškaitė, N. Špirkauskaitė, S. Byčenkienė, S.
Kecorius, D. Jasinevičienė, T. Petelski, T. Zielinski, J.
Andriejauskienė, R. Barisevičiūtė, A. Garbaras, P. Makuch, V.
Dudoitis, and V. Ulevičius, Characterization of aerosol
particles over the southern and South-Eastern Baltic Sea, Mar.
Chem.
190, 13–27 (2017),
https://doi.org/10.1016/j.marchem.2017.01.003