Laikinės skyros fluorescencijos spektrų
matavimas yra vienas iš populiariausių eksperimentinių metodų,
taikomų siekiant išsiaiškinti įvairiose molekulinėse sistemose
vykstančių fotoindukuotų vyksmų dinamiką ir ją nulemiančius
fizikinius mechanizmus. Neseniai publikuotame darbe [Chmeliov et
al., Nat. Plants 2, 16045 (2016)] buvo pristatyti augalų
fotosintetinių pigmentų ir baltymų anteninių kompleksų (LHCII)
agregatų laikinės skyros fluorescencijos spektrai, išmatuoti
esant plačiam temperatūriniam intervalui, o šių duomenų išsami
analizė leido atskleisti už nefotocheminį gesinimą atsakingo
augalų fotoapsaugos mechanizmo molekulinę prigimtį. Laikinės
skyros spektrams interpretuoti plačiai taikomi globaliosios
analizės metodai (tokie kaip gesimo ar evoliucijos spektrų
skaičiavimas), tačiau priklausomai nuo tiriamos sistemos
sudėtingumo jie ne visada sukuria teisingą toje sistemoje
vykstančių reiškinių fizikinį vaizdinį. Darbe šie metodai
pritaikomi minėtiems LHCII agregatų laikinės skyros
fluorescencijos spektrams aprašyti. Parodoma, kad nors
pateikiami matematiškai teisingi eksperimentinių duomenų
aprašymai, dėl sistemos nehomogeniškumo tinkamai interpretuoti
galima tik atsižvelgiant į papildomus spektroskopinius
duomenis.
References
/
Nuorodos
[1] R.E. Blankenship,
Molecular Mechanisms of
Photosynthesis, 2nd ed. (Wiley Blackwell, Chichester,
2014),
https://doi.org/10.1002/9780470758472
[2] A.V. Ruban, M.P. Johnson, and Ch.D.P. Duffy, The
photoprotective molecular switch in the photosystem II antenna,
Biochim. Biophys. Acta
1817, 167–181 (2012),
https://doi.org/10.1016/j.bbabio.2011.04.007
[3] Ch.D.P. Duffy and A.V. Ruban, Dissipative pathways in the
photosystem-II antenna in plants, J. Photochem. Photobiol. B
152,
215–226 (2015),
https://doi.org/10.1016/j.jphotobiol.2015.09.011
[4] T.K. Ahn, T.J. Avenson, M. Ballottari, Y.C. Cheng, K.K.
Niyogi, R. Bassi, and G.R. Fleming, Architecture of a
charge-transfer state regulating light harvesting in a plant
antenna protein, Science
320, 794–797 (2008),
https://doi.org/10.1126/science.1154800
[5] J. Chmeliov, A. Gelzinis, E. Songaila, R. Augulis, Ch.D.P.
Duffy, A.V. Ruban, and L. Valkunas, The nature of
self-regulation in photosynthetic light-harvesting antenna, Nat.
Plants
2, 16045 (2016),
https://doi.org/10.1038/nplants.2016.45
[6] P. Horton, A.V. Ruban, D. Rees, A.A. Pascal, G. Noctor, and
A.J. Young, Control of the light-harvesting function of
chloroplast membranes by aggregation of the LHCII
chlorophyll–protein complex, FEBS Lett.
292, 1–4 (1991),
https://doi.org/10.1016/0014-5793(91)80819-O
[7] A.V. Ruban, A. Young, and P. Horton, Modulation of
chlorophyll fluorescence quenching in isolated light harvesting
complex of Photosystem II, Biochim. Biophys. Acta
1186,
123–127 (1994),
https://doi.org/10.1016/0005-2728(94)90143-0
[8] T.P.J. Krüger, C. Ilioaia, M.P. Johnson, A.V. Ruban, E.
Papagiannakis, P. Horton, and R. van Grondelle, Controlled
disorder in plant light-harvesting complex II explains its
photoprotective role, Biophys. J.
102, 2669–2676 (2012),
https://doi.org/10.1016/j.bpj.2012.04.044
[9] T.P.J. Krüger, C. Ilioaia, M.P. Johnson, A.V. Ruban, and R.
van Grondelle, Disentangling the low-energy states of the major
light-harvesting complex of plants and their role in
photoprotection, Biochim. Biophys. Acta
1837, 1027–1038
(2014),
https://doi.org/10.1016/j.bbabio.2014.02.014
[10] A. Gelzinis, J. Chmeliov, A.V. Ruban, and L. Valkunas, Can
red-emitting state be responsible for fluorescence quenching in
LHCII aggregates? Photosynth. Res.
135, 275–284 (2018),
https://doi.org/10.1007/s11120-017-0430-7
[11] A.A. Pascal, Z.F. Liu, K. Broess, B. van Oort, H. van
Amerongen, C. Wang, P. Horton, B. Robert, W.R. Chang, and A.
Ruban, Molecular basis of photoprotection and control of
photosynthetic light-harvesting, Nature
436, 134–137
(2005),
https://doi.org/10.1038/nature03795
[12] A.V. Ruban, R. Berera, C. Ilioaia, I.H.M. van Stokkum,
J.T.M. Kennis, A.A. Pascal, H. van Amerongen, B. Robert, P.
Horton, and R. van Grondelle, Identification of a mechanism of
photoprotective energy dissipation in higher plants, Nature
450,
575–578 (2007),
https://doi.org/10.1038/nature06262
[13] Y. Miloslavina, A. Wehner, P.H. Lambrev, E. Wientjes, M.
Reus, G. Garab, R. Croce, and A.R. Holzwarth, Far-red
fluorescence: A direct spectroscopic marker for LHCII oligomer
formation in non-photochemical quenching, FEBS Lett.
582,
3625–3631 (2008),
https://doi.org/10.1016/j.febslet.2008.09.044
[14] A.R. Holzwarth, Y. Miloslavina, M. Nilkens, and P. Jahns,
Identification of two quenching sites active in the regulation
of photosynthetic light-harvesting studied by time-resolved
fluorescence, Chem. Phys. Lett.
483, 262–267 (2009),
https://doi.org/10.1016/j.cplett.2009.10.085
[15] M.G. Müller, P. Lambrev, M. Reus, E. Wientjes, R. Croce,
and A.R. Holzwarth, Singlet energy dissipation in the
photosystem II light-harvesting complex does not involve energy
transfer to carotenoids, Chem. Phys. Chem.
11, 1289–1296
(2010),
https://doi.org/10.1002/cphc.200900852
[16] A. Kell, X. Feng, C. Lin, Y. Yang, J. Li, M. Reus, A.R.
Holzwarth, and R. Jankowiak, Charge-transfer character of the
low-energy Chl
a Q
y absorption band in
aggregated light harvesting complexes II, J. Phys. Chem. B
118,
6086–6091 (2014),
https://doi.org/10.1021/jp501735p
[17] W.H. Lawton and E.A. Sylvestre, Self modeling curve
resolution, Technometrics
13, 617–633 (1971),
https://doi.org/10.1080/00401706.1971.10488823
[18] I.H.M. van Stokkum, D.S. Larsen, and R. van Grondelle,
Global and target analysis of time-resolved spectra, Biochim.
Biophys. Acta
1657, 82–104 (2004),
https://doi.org/10.1016/j.bbabio.2004.04.011
[19] C.W. Mullineaux, A.A. Pascal, P. Horton, and A.R.
Holzwarth, Excitation-energy quenching in aggregates of the LHC
II chlorophyll-protein complex: a time-resolved fluorescence
study, Biochim. Biophys. Acta
1141, 23–28 (1993),
https://doi.org/10.1016/0005-2728(93)90184-H
[20] J.P. Connelly, M.G. Müller, M. Hucke, G. Gatzen, C.W.
Mullineaux, A.V. Ruban, P. Horton, and A.R. Holzwarth, Ultrafast
spectroscopy of trimeric light-harvesting complex II from higher
plants, J. Phys. Chem. B
101, 1902–1909 (1997),
https://doi.org/10.1021/jp9619651
[21] S. Vasil'ev, K.-D. Irrgang, T. Schrötter, A. Bergmann,
H.-J. Eichler, and G. Renger, Quenching of chlorophyll a
fluorescence in the aggregates of LHCII: Steady state
fluorescence and picosecond relaxation kinetics, Biochemistry
36,
7503–7512 (1997),
https://doi.org/10.1021/bi9625253
[22] I. Moya, M. Silvestri, O. Vallon, G. Cinque, and R. Bassi,
Time-resolved fluorescence analysis of the photosystem II
antenna proteins in detergent micelles and liposomes,
Biochemistry
40, 12552–12561 (2001),
https://doi.org/10.1021/bi010342x
[23] M.A. Palacios, J. Standfuss, M. Vengris, B.F. van Oort,
I.H.M. van Stokkum, W. Kühlbrandt, H. van Amerongen, and R. van
Grondelle, A comparison of the three isoforms of the
light-harvesting complex II using transient absorption and
time-resolved fluorescence measurements, Photosynth. Res.
88,
269–285 (2006),
https://doi.org/10.1007/s11120-006-9042-3
[24] C.D. van der Weij-de Wit, J.A. Ihalainen, R. van Grondelle,
and J.P. Dekker, Excitation energy transfer in native and
unstacked thylakoid membranes studied by low temperature and
ultrafast fluorescence spectroscopy, Photosynth. Res.
93,
173–182 (2007),
https://doi.org/10.1007/s11120-007-9157-1
[25] M. Fuciman, M.M. Enriquez, T. Polívka, L. Dall'Osto, R.
Bassi, and H.A. Frank, Role of xanthophylls in light harvesting
in green plants: A spectroscopic investigation of mutant LHCII
and Lhcb pigment–protein complexes, J. Phys. Chem. B
116,
3834–3849 (2012),
https://doi.org/10.1021/jp210042z
[26] N.M. Magdaong, M.M. Enriquez, A.M. LaFountain, L. Rafka,
and H.A. Frank, Effect of protein aggregation on the
spectroscopic properties and excited state kinetics of the LHCII
pigment–protein complex from green plants, Photosynth. Res.
118,
259–276 (2013),
https://doi.org/10.1007/s11120-013-9924-0
[27] L. Tian, E. Dinc, and R. Croce, LHCII populations in
different quenching states are present in the thylakoid
membranes in a ratio that depends on the light conditions, J.
Phys. Chem. Lett.
6, 2339–2344 (2015),
https://doi.org/10.1021/acs.jpclett.5b00944
[28] B. van Oort, R. van Grondelle, and I.H.M. van Stokkum, A
hidden state in light-harvesting complex II revealed by
multipulse spectroscopy, J. Phys. Chem. B
119, 5184–5193
(2015),
https://doi.org/10.1021/acs.jpcb.5b01335
[29] V.I. Prokhorenko, in:
EPA (European Photochemistry
Association) Newsletter (Media Services, UK, June 2012)
pp. 21–23,
[PDF]
[30] Ch. Chatfield and A.J. Collins,
Introduction to
Multivariate Analysis (Chapman & Hall/CRC, London,
1980),
https://doi.org/10.1007/978-1-4899-3184-9
[31] T.P.J. Krüger, V.I. Novoderezkhin, C. Ilioaia, and R. van
Grondelle, Fluorescence spectral dynamics of single LHCII
trimers, Biophys. J.
98, 3093–3101 (2010),
https://doi.org/10.1016/j.bpj.2010.03.028
[32] L. Dall'Osto, S. Cazzaniga, M. Bressan, D. Paleček, K.
Židek, K.K. Niyogi, G.R. Fleming, D. Zigmantas, and R. Bassi,
Two mechanisms for dissipation of excess light in monomeric and
trimeric light-harvesting complexes, Nat. Plants
3,
17033 (2017),
https://doi.org/10.1038/nplants.2017.33
[33] V.I. Novoderezhkin, M.A. Palacios, H. van Amerongen, and R.
van Grondelle, Excitation dynamics in the LHCII complex of
higher plants: Modeling based on the 2.72 Å crystal structure,
J. Phys. Chem. B
109, 10493–10504 (2005),
https://doi.org/10.1021/jp044082f
[34] F. Müh, M. El-Amine Madjet, and Th. Renger, Structure-based
identification of energy sinks in plant light-harvesting complex
II, J. Phys. Chem. B
114, 13517–13535 (2010),
https://doi.org/10.1021/jp106323e