[PDF] https://doi.org/10.3952/physics.v58i4.3874

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 58, 295–306 (2018)
 


DECAY- AND EVOLUTION-ASSOCIATED SPECTRA OF TIME-RESOLVED FLUORESCENCE OF LHCII AGGREGATES
 
Andrius Gelzinisa,b, Yakov Bravera,b, Jevgenij Chmeliova,b, and Leonas Valkunasa,b
 aInstitute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
 
bDepartment of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
 
E-mail: leonas.valkunas@ff.vu.lt
Received 22 July 2018; accepted 15 October 2018

Non-photochemical quenching (NPQ) is responsible for the protection of the photosynthetic apparatus of plants from photodamage at high-light conditions. It is commonly agreed that NPQ takes place in the major light-harvesting complexes (LHCII), however, its exact mechanisms are still under debate. Valuable information about its molecular nature can be provided by measuring time-resolved fluorescence (TRF) spectra of LHCII complexes and their aggregates. Previously [Chmeliov et al., Nat. Plants 2, 16045 (2016)], we analysed the corresponding TRF spectra using the multivariate curve resolution method and proposed a three-state model to describe the spectroscopic data. Usually, such data is described in terms of global analysis resulting in decay or evolution-associated spectra. In this work, we apply such analysis to the TRF data of LHCII aggregates and show that, although mathematically feasible, it cannot be directly related to the physical kinetic model. Nevertheless, a careful examination supplemented with additional spectroscopic information still results in the same three-state model proposed before.
Keywords: time-resolved fluorescence, decay associated spectra, ligh-harvesting complex
PACS: 78.47.D-, 78.47.jd, 82.20.Wt

LHCII AGREGATŲ LAIKINĖS SKYROS FLUORESCENCIJOS GESIMO IR EVOLIUCIJOS SPEKTRAI
Andrius Gelžinisa,b, Yakov Bravera,b, Jevgenij Chmeliova,b, Leonas Valkūnasa,b

aVilniaus universiteto Fizikos fakulteto Cheminės fizikos institutas, Vilnius, Lietuva
bFizinių ir technologijos mokslų centro Molekulinių darinių fizikos skyrius, Vilnius, Lietuva
 
Laikinės skyros fluorescencijos spektrų matavimas yra vienas iš populiariausių eksperimentinių metodų, taikomų siekiant išsiaiškinti įvairiose molekulinėse sistemose vykstančių fotoindukuotų vyksmų dinamiką ir ją nulemiančius fizikinius mechanizmus. Neseniai publikuotame darbe [Chmeliov et al., Nat. Plants 2, 16045 (2016)] buvo pristatyti augalų fotosintetinių pigmentų ir baltymų anteninių kompleksų (LHCII) agregatų laikinės skyros fluorescencijos spektrai, išmatuoti esant plačiam temperatūriniam intervalui, o šių duomenų išsami analizė leido atskleisti už nefotocheminį gesinimą atsakingo augalų fotoapsaugos mechanizmo molekulinę prigimtį. Laikinės skyros spektrams interpretuoti plačiai taikomi globaliosios analizės metodai (tokie kaip gesimo ar evoliucijos spektrų skaičiavimas), tačiau priklausomai nuo tiriamos sistemos sudėtingumo jie ne visada sukuria teisingą toje sistemoje vykstančių reiškinių fizikinį vaizdinį. Darbe šie metodai pritaikomi minėtiems LHCII agregatų laikinės skyros fluorescencijos spektrams aprašyti. Parodoma, kad nors pateikia­mi matematiškai teisingi eksperimentinių duomenų aprašymai, dėl sistemos nehomogeniškumo tinkamai interpretuoti galima tik atsižvelgiant į papildomus spekt­roskopinius duo­menis.

References / Nuorodos

[1] R.E. Blankenship, Molecular Mechanisms of Pho­to­synthesis, 2nd ed. (Wiley Blackwell, Chiches­ter, 2014),
https://doi.org/10.1002/9780470758472
[2] A.V. Ruban, M.P. Johnson, and Ch.D.P. Duffy, The photoprotective molecular switch in the photosystem II antenna, Biochim. Biophys. Acta 1817, 167–181 (2012),
https://doi.org/10.1016/j.bbabio.2011.04.007
[3] Ch.D.P. Duffy and A.V. Ruban, Dissipative pathways in the photosystem-II antenna in plants, J. Photochem. Photobiol. B 152, 215–226 (2015),
https://doi.org/10.1016/j.jphotobiol.2015.09.011
[4] T.K. Ahn, T.J. Avenson, M. Ballottari, Y.C. Cheng, K.K. Niyogi, R. Bassi, and G.R. Fleming, Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein, Science 320, 794–797 (2008),
https://doi.org/10.1126/science.1154800
[5] J. Chmeliov, A. Gelzinis, E. Songaila, R. Augulis, Ch.D.P. Duffy, A.V. Ruban, and L. Valkunas, The nature of self-regulation in photosynthetic light-harvesting antenna, Nat. Plants 2, 16045 (2016),
https://doi.org/10.1038/nplants.2016.45
[6] P. Horton, A.V. Ruban, D. Rees, A.A. Pascal, G. Noctor, and A.J. Young, Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll–protein complex, FEBS Lett. 292, 1–4 (1991),
https://doi.org/10.1016/0014-5793(91)80819-O
[7] A.V. Ruban, A. Young, and P. Horton, Modulation of chlorophyll fluorescence quenching in isolated light harvesting complex of Photosystem II, Biochim. Biophys. Acta 1186, 123–127 (1994),
https://doi.org/10.1016/0005-2728(94)90143-0
[8] T.P.J. Krüger, C. Ilioaia, M.P. Johnson, A.V. Ruban, E. Papagiannakis, P. Horton, and R. van Grondelle, Controlled disorder in plant light-harvesting complex II explains its photoprotective role, Biophys. J. 102, 2669–2676 (2012),
https://doi.org/10.1016/j.bpj.2012.04.044
[9] T.P.J. Krüger, C. Ilioaia, M.P. Johnson, A.V. Ruban, and R. van Grondelle, Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection, Biochim. Biophys. Acta 1837, 1027–1038 (2014),
https://doi.org/10.1016/j.bbabio.2014.02.014
[10] A. Gelzinis, J. Chmeliov, A.V. Ruban, and L. Valkunas, Can red-emitting state be responsible for fluorescence quenching in LHCII aggregates? Photosynth. Res. 135, 275–284 (2018),
https://doi.org/10.1007/s11120-017-0430-7
[11] A.A. Pascal, Z.F. Liu, K. Broess, B. van Oort, H. van Amerongen, C. Wang, P. Horton, B. Robert, W.R. Chang, and A. Ruban, Molecular basis of photoprotection and control of photosynthetic light-harvesting, Nature 436, 134–137 (2005),
https://doi.org/10.1038/nature03795
[12] A.V. Ruban, R. Berera, C. Ilioaia, I.H.M. van Stokkum, J.T.M. Kennis, A.A. Pascal, H. van Amerongen, B. Robert, P. Horton, and R. van Grondelle, Identification of a mechanism of photoprotective energy dissipation in higher plants, Nature 450, 575–578 (2007),
https://doi.org/10.1038/nature06262
[13] Y. Miloslavina, A. Wehner, P.H. Lambrev, E. Wientjes, M. Reus, G. Garab, R. Croce, and A.R. Holzwarth, Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching, FEBS Lett. 582, 3625–3631 (2008),
https://doi.org/10.1016/j.febslet.2008.09.044
[14] A.R. Holzwarth, Y. Miloslavina, M. Nilkens, and P. Jahns, Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence, Chem. Phys. Lett. 483, 262–267 (2009),
https://doi.org/10.1016/j.cplett.2009.10.085
[15] M.G. Müller, P. Lambrev, M. Reus, E. Wientjes, R. Croce, and A.R. Holzwarth, Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids, Chem. Phys. Chem. 11, 1289–1296 (2010),
https://doi.org/10.1002/cphc.200900852
[16] A. Kell, X. Feng, C. Lin, Y. Yang, J. Li, M. Reus, A.R. Holzwarth, and R. Jankowiak, Charge-transfer character of the low-energy Chl a Qy absorption band in aggregated light harvesting complexes II, J. Phys. Chem. B 118, 6086–6091 (2014),
https://doi.org/10.1021/jp501735p
[17] W.H. Lawton and E.A. Sylvestre, Self modeling curve resolution, Technometrics 13, 617–633 (1971),
https://doi.org/10.1080/00401706.1971.10488823
[18] I.H.M. van Stokkum, D.S. Larsen, and R. van Grondelle, Global and target analysis of time-resolved spectra, Biochim. Biophys. Acta 1657, 82–104 (2004),
https://doi.org/10.1016/j.bbabio.2004.04.011
[19] C.W. Mullineaux, A.A. Pascal, P. Horton, and A.R. Holzwarth, Excitation-energy quenching in aggregates of the LHC II chlorophyll-protein complex: a time-resolved fluorescence study, Biochim. Biophys. Acta 1141, 23–28 (1993),
https://doi.org/10.1016/0005-2728(93)90184-H
[20] J.P. Connelly, M.G. Müller, M. Hucke, G. Gatzen, C.W. Mullineaux, A.V. Ruban, P. Horton, and A.R. Holzwarth, Ultrafast spectroscopy of trimeric light-harvesting complex II from higher plants, J. Phys. Chem. B 101, 1902–1909 (1997),
https://doi.org/10.1021/jp9619651
[21] S. Vasil'ev, K.-D. Irrgang, T. Schrötter, A. Bergmann, H.-J. Eichler, and G. Renger, Quenching of chlorophyll a fluorescence in the aggregates of LHCII: Steady state fluorescence and picosecond relaxation kinetics, Biochemistry 36, 7503–7512 (1997),
https://doi.org/10.1021/bi9625253
[22] I. Moya, M. Silvestri, O. Vallon, G. Cinque, and R. Bassi, Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes, Biochemistry 40, 12552–12561 (2001),
https://doi.org/10.1021/bi010342x
[23] M.A. Palacios, J. Standfuss, M. Vengris, B.F. van Oort, I.H.M. van Stokkum, W. Kühlbrandt, H. van Amerongen, and R. van Grondelle, A comparison of the three isoforms of the light-harvesting complex II using transient absorption and time-resolved fluorescence measurements, Photosynth. Res. 88, 269–285 (2006),
https://doi.org/10.1007/s11120-006-9042-3
[24] C.D. van der Weij-de Wit, J.A. Ihalainen, R. van Grondelle, and J.P. Dekker, Excitation energy transfer in native and unstacked thylakoid membranes studied by low temperature and ultrafast fluorescence spectroscopy, Photosynth. Res. 93, 173–182 (2007),
https://doi.org/10.1007/s11120-007-9157-1
[25] M. Fuciman, M.M. Enriquez, T. Polívka, L. Dall'Osto, R. Bassi, and H.A. Frank, Role of xanthophylls in light harvesting in green plants: A spectroscopic investigation of mutant LHCII and Lhcb pigment–protein complexes, J. Phys. Chem. B 116, 3834–3849 (2012),
https://doi.org/10.1021/jp210042z
[26] N.M. Magdaong, M.M. Enriquez, A.M. LaFountain, L. Rafka, and H.A. Frank, Effect of protein aggregation on the spectroscopic properties and excited state kinetics of the LHCII pigment–protein complex from green plants, Photosynth. Res. 118, 259–276 (2013),
https://doi.org/10.1007/s11120-013-9924-0
[27] L. Tian, E. Dinc, and R. Croce, LHCII populations in different quenching states are present in the thylakoid membranes in a ratio that depends on the light conditions, J. Phys. Chem. Lett. 6, 2339–2344 (2015),
https://doi.org/10.1021/acs.jpclett.5b00944
[28] B. van Oort, R. van Grondelle, and I.H.M. van Stokkum, A hidden state in light-harvesting complex II revealed by multipulse spectroscopy, J. Phys. Chem. B 119, 5184–5193 (2015),
https://doi.org/10.1021/acs.jpcb.5b01335
[29] V.I. Prokhorenko, in: EPA (European Photochemistry Association) Newsletter (Media Services, UK, June 2012) pp. 21–23,
[PDF]
[30] Ch. Chatfield and A.J. Collins, Introduction to Multivariate Analysis (Chapman & Hall/CRC, London, 1980),
https://doi.org/10.1007/978-1-4899-3184-9
[31] T.P.J. Krüger, V.I. Novoderezkhin, C. Ilioaia, and R. van Grondelle, Fluorescence spectral dynamics of single LHCII trimers, Biophys. J. 98, 3093–3101 (2010),
https://doi.org/10.1016/j.bpj.2010.03.028
[32] L. Dall'Osto, S. Cazzaniga, M. Bressan, D. Paleček, K. Židek, K.K. Niyogi, G.R. Fleming, D. Zigmantas, and R. Bassi, Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes, Nat. Plants 3, 17033 (2017),
https://doi.org/10.1038/nplants.2017.33
[33] V.I. Novoderezhkin, M.A. Palacios, H. van Amerongen, and R. van Grondelle, Excitation dynamics in the LHCII complex of higher plants: Modeling based on the 2.72 Å crystal structure, J. Phys. Chem. B 109, 10493–10504 (2005),
https://doi.org/10.1021/jp044082f
[34] F. Müh, M. El-Amine Madjet, and Th. Renger, Structure-based identification of energy sinks in plant light-harvesting complex II, J. Phys. Chem. B 114, 13517–13535 (2010),
https://doi.org/10.1021/jp106323e