[PDF] https://doi.org/10.3952/physics.v58i4.3875

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 58, 307–317 (2018)
 


EXCITATION DYNAMICS OF TWO LEVEL QUANTUM SYSTEMS COUPLED TO MORSE VIBRATIONS
 
Darius Abramavičius and Tomas Marčiulionis
 Institute of Chemical Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
 E-mail: darius.abramavicius@ff.vu.lt
Received 5 November 2018; accepted 2 January 2019

Electronic excited states of a molecular aggregate coupled to Morse vibrations are analysed by a nonperturbative time dependent variational approach. General equations of motion for an electronically excited state are derived for electronic amplitudes, nuclear displacements and squeezing of the nuclear wave packets. Numerical simulations demonstrate that anharmonicities of vibrations lead to short-term irreversible dynamics, extra localization and transformation of stationary lowest-energy states.
Keywords: excitons, polarons, nonlinear vibrations, molecular aggregates

SUŽADINIMO DINAMIKA DVIEJŲ LYGIŲ KVANTINĖJE SISTEMOJE, SĄVEIKAUJANČIOJE SU MORSO VIRPESIAIS
Darius Abramavičius, Tomas Marčiulionis

Vilniaus universiteto Cheminės fizikos institutas, Vilnius, Lietuva
 
Molekulinio agregato, sąveikaujančio su Morso tipo virpesiais, sužadintų būsenų kvantinė dinamika modeliuojama naudojant nuo laiko priklausantį variacinį metodą. Gautos sužadintos būsenos elektroninių amplitudžių, virpesinių bangų paketų poslinkių ir susispaudimų bendros judėjimo lygtys.
Kompiuterinis modeliavimas parodo, kad virpesių anharmoniškumas įneša judėjimo negrįžtamumą labai trumpų laikų skalėje ir papildomą elektroninio sužadinimo lokalizaciją. Be to, žemiausios energijos sužadintos būsenos simetrija dėl anharmoniškumo gali pakisti iš esmės.

References / Nuorodos

[1] M. Pope and C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, Oxford and New York, 1999),
https://global.oup.com/academic/product/electronic-processes-in-organic-crystals-and-polymers-9780195129632
[2] M.C. Petty, Organic and Molecular Electronics: From Principles to Practice (Wiley, 2019),
https://www.wiley.com/en/Organic+and+Molecular+Electronics%3A+From+Principles+to+Practice%2C+2nd+Edition-p-9781118879283
[3] R.E. Blankenship, Molecular Mechanisms of Photosynthesis, 2nd ed. (Wiley Blackwell, Oxford, UK; Chichester, UK; Hoboken, USA, 2014),
https://www.wiley.com/en/Molecular+Mechanisms+of+Photosynthesis%2C+2nd+Edition-p-9781118796962
[4] H. van Amerongen, L. Valkunas, and R. van Gron­delle, Photosynthetic Excitons (World Scientific, Singapore, New Jersey, London, Hong Kong, 2006),
https://doi.org/10.1142/3609
[5] A. Davydov, Theory of Molecular Excitons (Springer, 1971),
https://doi.org/10.1007/978-1-4899-5169-4
[6] L. Valkunas, D. Abramavicius, and T. Mančal, Molecular Excitation Dynamics and Relaxation (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013),
https://doi.org/10.1002/9783527653652
[7] S.S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995),
[PDF]
[8] R. Jankowiak, M. Reppert, V. Zazubovich, J. Pieper, and T. Reinot, Site selective and single complex laser-based spectroscopes: A window on excited state electronic structure, excitation energy transfer, and electron–phonon coupling of selected photosynthetic complexes, Chem. Rev. 111, 4546–4598 (2011),
https://doi.org/10.1021/cr100234j
[9] O. Rancova, R. Jankowiak, and D. Abramavicius, Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K, J. Chem. Phys. 142(21), 212428 (2015),
https://doi.org/10.1063/1.4918584
[10] D. Abramavicius, V. Chorošajev, and L. Valkunas, Tracing feed-back driven exciton dynamics in molecular aggregates, Phys. Chem. Chem. Phys. 20, 21225–21240 (2018),
https://doi.org/10.1039/C8CP00682B
[11] Zero-Phonon Lines and Spectral Hole Burning in Spectroscopy and Photochemistry, ed. K.H. Olev Sild (Springer-Verlag, 1988),
https://www.springer.com/gp/book/9783642736407
[12] A. Galestian Pour, C.N. Lincoln, V. Perlik, F. Šanda, and J. Hauer, Anharmonic vibrational effects in linear and two-dimensional electronic spectra, Phys. Chem. Chem. Phys. 19, 24752–24760 (2017),
https://doi.org/10.1039/C7CP05189A
[13] M. Dinpajooh and D.V. Matyushov, Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra, J. Phys. Chem. B 118(28), 7925–7936 (2014),
https://doi.org/10.1021/jp500733s
[14] A. Anda, D. Abramavičius, and T. Hansen, Two-dimensional electronic spectroscopy of anharmonic molecular potentials, Phys. Chem. Chem. Phys. 20, 1642–1652 (2018),
https://doi.org/10.1039/C7CP06583C
[15] V. Chorošajev, T. Marčiulionis, and D. Abramavicius, Temporal dynamics of excitonic states with nonlinear electron-vibrational coupling, J. Chem. Phys. 147(7), 074114 (2017),
https://doi.org/10.1063/1.4985910
[16] V. Butkus, L. Valkunas, and D. Abramavicius, Vibronic phenomena and exciton-vibrational interference in two-dimensional spectra of molecular aggregates, J. Chem. Phys. 140(3), 034306 (2014),
https://doi.org/10.1063/1.4861466
[17] L. Chen, M. Gelin, and Y. Zhao, Dynamics of the spin-boson model: A comparison of the multiple Davydov D1, D1.5, D2 Ansätze, Chem. Phys. [in press, corrected proof, 2018],
https://doi.org/10.1016/j.chemphys.2018.08.041
[18] V. Chorošajev, O. Rancova, and D. Abramavicius, Polaronic effects at finite temperatures in the B850 ring of the LH2 complex, Phys. Chem. Chem. Phys. 18, 7966 (2016),
https://doi.org/10.1039/C5CP06871A
[19] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah, Julia: A fresh approach to numerical computing, SIAM Rev. 59(1), 65–98 (2017),
https://doi.org/10.1137/141000671
[20] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007),
https://www.cambridge.org/academic/subjects/mathematics/numerical-recipes/numerical-recipes-art-scientific-computing-3rd-edition?format=HB&isbn=9780521880688
[21] P. Hamm, M. Lim, and R.M. Hochstrasser, Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy, J. Phys. Chem. B 102(31), 6123–6138 (1998),
https://doi.org/10.1021/jp9813286
[22] M. Cho, Two-Dimensional Optical Spectroscopy, 1st ed. (CRC Press, 2009),
https://doi.org/10.1201/9781420084306
[23] A. Gelzinis, D. Abramavicius, and L. Valkunas, Non-Markovian effects in time-resolved fluorescence spectrum of molecular aggregates: Tracing polaron formation, Phys. Rev. B 84, 245430 (2011),
https://doi.org/10.1103/PhysRevB.84.245430
[24] J.-P. Gazeau, Coherent States in Quantum Physics (Wiley-VCH, 2009),
https://doi.org/10.1002/9783527628285
[25] D.R. Truax, Baker–Campbell–Hausdorff relations and unitarity of SU(2) and SU(1,1) squeeze operators, Phys. Rev. D 31, 1988–1991 (1985),
https://doi.org/10.1103/PhysRevD.31.1988