References
/
Nuorodos
[1] M. Pope and C.E. Swenberg,
Electronic Processes in
Organic Crystals and Polymers, 2nd ed. (Oxford University
Press, Oxford and New York, 1999),
https://global.oup.com/academic/product/electronic-processes-in-organic-crystals-and-polymers-9780195129632
[2] M.C. Petty,
Organic and Molecular Electronics: From
Principles to Practice (Wiley, 2019),
https://www.wiley.com/en/Organic+and+Molecular+Electronics%3A+From+Principles+to+Practice%2C+2nd+Edition-p-9781118879283
[3] R.E. Blankenship,
Molecular Mechanisms of Photosynthesis,
2nd ed. (Wiley Blackwell, Oxford, UK; Chichester, UK; Hoboken,
USA, 2014),
https://www.wiley.com/en/Molecular+Mechanisms+of+Photosynthesis%2C+2nd+Edition-p-9781118796962
[4] H. van Amerongen, L. Valkunas, and R. van Grondelle,
Photosynthetic
Excitons (World Scientific, Singapore, New Jersey, London,
Hong Kong, 2006),
https://doi.org/10.1142/3609
[5] A. Davydov,
Theory of Molecular Excitons (Springer,
1971),
https://doi.org/10.1007/978-1-4899-5169-4
[6] L. Valkunas, D. Abramavicius, and T. Mančal,
Molecular
Excitation Dynamics and Relaxation (Wiley-VCH Verlag GmbH
& Co. KGaA, Weinheim, Germany, 2013),
https://doi.org/10.1002/9783527653652
[7] S.S. Mukamel,
Principles of Nonlinear Optical
Spectroscopy (Oxford University Press, New York, 1995),
[PDF]
[8] R. Jankowiak, M. Reppert, V. Zazubovich, J. Pieper, and T.
Reinot, Site selective and single complex laser-based
spectroscopes: A window on excited state electronic structure,
excitation energy transfer, and electron–phonon coupling of
selected photosynthetic complexes, Chem. Rev.
111,
4546–4598 (2011),
https://doi.org/10.1021/cr100234j
[9] O. Rancova, R. Jankowiak, and D. Abramavicius, Probing
environment fluctuations by two-dimensional electronic
spectroscopy of molecular systems at temperatures below 5 K, J.
Chem. Phys.
142(21), 212428 (2015),
https://doi.org/10.1063/1.4918584
[10] D. Abramavicius, V. Chorošajev, and L. Valkunas, Tracing
feed-back driven exciton dynamics in molecular aggregates, Phys.
Chem. Chem. Phys.
20, 21225–21240 (2018),
https://doi.org/10.1039/C8CP00682B
[11]
Zero-Phonon Lines and Spectral Hole Burning in
Spectroscopy and Photochemistry, ed. K.H. Olev Sild
(Springer-Verlag, 1988),
https://www.springer.com/gp/book/9783642736407
[12] A. Galestian Pour, C.N. Lincoln, V. Perlik, F. Šanda, and
J. Hauer, Anharmonic vibrational effects in linear and
two-dimensional electronic spectra, Phys. Chem. Chem. Phys.
19,
24752–24760 (2017),
https://doi.org/10.1039/C7CP05189A
[13] M. Dinpajooh and D.V. Matyushov, Non-Gaussian lineshapes
and dynamics of time-resolved linear and nonlinear (correlation)
spectra, J. Phys. Chem. B
118(28), 7925–7936 (2014),
https://doi.org/10.1021/jp500733s
[14] A. Anda, D. Abramavičius, and T. Hansen, Two-dimensional
electronic spectroscopy of anharmonic molecular potentials,
Phys. Chem. Chem. Phys.
20, 1642–1652 (2018),
https://doi.org/10.1039/C7CP06583C
[15] V. Chorošajev, T. Marčiulionis, and D. Abramavicius,
Temporal dynamics of excitonic states with nonlinear
electron-vibrational coupling, J. Chem. Phys.
147(7),
074114 (2017),
https://doi.org/10.1063/1.4985910
[16] V. Butkus, L. Valkunas, and D. Abramavicius, Vibronic
phenomena and exciton-vibrational interference in
two-dimensional spectra of molecular aggregates, J. Chem. Phys.
140(3), 034306 (2014),
https://doi.org/10.1063/1.4861466
[17] L. Chen, M. Gelin, and Y. Zhao, Dynamics of the spin-boson
model: A comparison of the multiple Davydov D
1, D
1.5,
D
2 Ansätze, Chem. Phys. [in press, corrected proof,
2018],
https://doi.org/10.1016/j.chemphys.2018.08.041
[18] V. Chorošajev, O. Rancova, and D. Abramavicius, Polaronic
effects at finite temperatures in the B850 ring of the LH2
complex, Phys. Chem. Chem. Phys.
18, 7966 (2016),
https://doi.org/10.1039/C5CP06871A
[19] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah, Julia:
A fresh approach to numerical computing, SIAM Rev.
59(1),
65–98 (2017),
https://doi.org/10.1137/141000671
[20] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.
Flannery,
Numerical Recipes: The Art of Scientific Computing,
3rd ed. (Cambridge University Press, 2007),
https://www.cambridge.org/academic/subjects/mathematics/numerical-recipes/numerical-recipes-art-scientific-computing-3rd-edition?format=HB&isbn=9780521880688
[21] P. Hamm, M. Lim, and R.M. Hochstrasser, Structure of the
amide I band of peptides measured by femtosecond
nonlinear-infrared spectroscopy, J. Phys. Chem. B
102(31),
6123–6138 (1998),
https://doi.org/10.1021/jp9813286
[22] M. Cho,
Two-Dimensional Optical Spectroscopy, 1st
ed. (CRC Press, 2009),
https://doi.org/10.1201/9781420084306
[23] A. Gelzinis, D. Abramavicius, and L. Valkunas,
Non-Markovian effects in time-resolved fluorescence spectrum of
molecular aggregates: Tracing polaron formation, Phys. Rev. B
84,
245430 (2011),
https://doi.org/10.1103/PhysRevB.84.245430
[24] J.-P. Gazeau,
Coherent States in Quantum Physics
(Wiley-VCH, 2009),
https://doi.org/10.1002/9783527628285
[25] D.R. Truax, Baker–Campbell–Hausdorff relations and
unitarity of SU(2) and SU(1,1) squeeze operators, Phys. Rev. D
31,
1988–1991 (1985),
https://doi.org/10.1103/PhysRevD.31.1988