Fotosintetiniai organizmai transformuoja ir
išsaugo sugertą saulės šviesos energiją stabilios cheminės
energijos pavidalu. Tam padaryti evoliucijos metu jie išvystė
specializuotas pigmentų-baltymų kompleksų sistemas, sudarytas iš
šviesą sugeriančių antenų ir reakcijos centrų. Fotosintetinės
antenos sudarytos iš tankaus pigmentų tinklo, laikomo baltymo
karkaso, o jų funkcija yra sugerti šviesą ir nukreipti
sužadinimo energiją į reakcijos centrą. Dešimtmečiai
eksperimentinio ir teorinio darbo leido atskleisti detalų
energijos pernašos paveikslą fotosintetiniame aparate.
Pagrindiniai parametrai, lemiantys sužadinimo energijos
relaksaciją ir pernašą, yra tarppigmentinės sąveikos stiprumas
ir energetinė netvarka arba pigmentų, esančių ekvivalentiškose
padėtyse, sužadinimo energijos netapatumas dėl sąveikos su
netvarkia baltymo matrica. Cilindriškai simetriškos šviesą
sugeriančios antenos iš purpurinių bakterijų yra geras šių
parametrų sąveiką iliustruojantis pavyzdys. Spektrinė šios
sąveikos reprezentacija buvo aiškiai stebima naudojant pavienių
molekulių fluorescencijos mikroskopiją. Šių matavimų rezultatai
buvo interpretuoti naudojant intuityviai lengvai suprantamą
dichotominį energetinės netvarkos modelį.
References
/
Nuorodos
[1] E. Rabinowitch and Govindjee,
Photosynthesis (Wiley,
New York, 1969),
https://doi.org/10.1126/science.169.3948.848
[2] G.F. Moore and G.W. Brudvig, Energy conversion in
photosynthesis: a paradigm for solar fuel production, Annu. Rev.
Condens. Matter Phys.
2(1), 303–327 (2011),
https://doi.org/10.1146/annurev-conmatphys-062910-140503
[3] V. Sundström, Femtobiology, Annu. Rev. Phys. Chem.
59(1),
53–77 (2008),
https://doi.org/10.1146/annurev.physchem.59.032607.093615
[4] W.F. Watson and R. Livingston, Self-quenching and
sensitization of fluorescence of chlorophyll solutions, J. Chem.
Phys.
18(6), 802–809 (1950),
https://doi.org/10.1063/1.1747779
[5] W. Kulbrant and D.N. Wang, Three-dimensional structure of
plant light-harvesting complex determined by electron
crystallography, Nature
350, 130–34 (1991),
https://doi.org/10.1038/350130a0
[6] B.W. Matthews, R.E. Fenna, M.C. Bolognesi, M.F. Schmid, and
J.M. Olson, Structure of a bacteriochlorophyll a-protein from
the green photosynthetic bacterium Prosthecochloris aestuarii,
J. Mol. Biol.
131(2), 259–285 (1979),
https://doi.org/10.1016/0022-2836(79)90076-7
[7] Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An,
and W. Chang, Crystal structure of spinach major
light-harvesting complex at 2.72 Å resolution, Nature
428(6980),
287–292 (2004),
https://doi.org/10.1038/nature02373
[8] C. Büchel, Fucoxanthin-chlorophyll proteins in diatoms: 18
and 19 kDa subunits assemble into different oligomeric states,
Biochemistry
42(44), 13027–13034 (2003),
https://doi.org/10.1021/bi0349468
[9] E. Hofmann, P.M. Wrench, F.P. Sharples, R.G. Hiller, W.
Welte, and K. Diederichs, Structural basis of light harvesting
by carotenoids: peridininchlorophyll-protein from Amphidinium
carterae, Science
272, 1788–1791 (1996),
https://doi.org/10.1126/science.272.5269.1788
[10] R. MacColl, Cyanobacterial phycobilisomes, J. Struct. Biol.
124(2–3), 311–334 (1998),
https://doi.org/10.1006/jsbi.1998.4062
[11] G.T. Oostergetel, H. van Amerongen, and E.J. Boekema, The
chlorosome: A prototype for efficient light harvesting in
photosynthesis, Photosynth. Res.
104(2), 245–255 (2010),
https://doi.org/10.1007/s11120-010-9533-0
[12] R. van Grondelle and V.I. Novoderezhkin, Energy transfer in
photosynthesis: Experimental insights and quantitative models,
Phys. Chem. Chem. Phys.
8(7), 793–807 (2006),
https://doi.org/10.1039/b514032c
[13] T. Gillbro, A.V. Sharkov, I.V. Kryukov, E.V. Khoroshilov,
P.G. Kryukov, R. Fischer, and H. Scheer, Förster energy transfer
between neighbouring chromophores in C-phycocyanin trimers,
Biochim. Biophys. Acta
1140(3), 321–326 (1993),
https://doi.org/10.1016/0005-2728(93)90072-N
[14] M. Kasha, Energy transfer mechanisms and the molecular
exciton model for molecular aggregates, Radiat. Res.
20(1),
55 (1963),
https://doi.org/10.2307/3571331
[15] G.D. Scholes, X.J. Jordanides, and G.R. Fleming, Adapting
the Förster theory of energy transfer for modeling dynamics in
aggregated molecular assemblies, J. Phys. Chem. B
105(8),
1640–1651 (2001),
https://doi.org/10.1021/jp003571m
[16] W.M. Zhang, T. Meier, V. Chernyak, and S. Mukamel, Exciton
migration and three-pulse femtosecond optical spectroscopies of
photosynthetic antenna complexes, J. Chem. Phys.
108(18),
7763 (1998),
https://doi.org/10.1063/1.476212
[17] M. Yang, A. Damjanović, H.M. Vaswani, and G.R. Fleming,
Energy transfer in Photosystem I of cyanobacteria
Synechococcus
elongatus: Model study with structure-based semi-empirical
Hamiltonian and experimental spectral density, Biophys. J.
85(1),
140–158 (2003),
https://doi.org/10.1016/S0006-3495(03)74461-0
[18] R. van Grondelle, J.P. Dekke, T. Gillbro, and V. Sundström,
Energy transfer and trapping in photosynthesis, Biochim.
Biophys. Acta
8, (1994),
https://doi.org/10.1016/0005-2728(94)90166-x
[19] G. McDermott, S.M. Prince, A.A. Freer, A.M.
Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, and N.W.
Isaacs, Crystal structure of an integral membrane
light-harvesting complex from photosynthetic bacteria, Nature
374,
517–521 (1995),
https://doi.org/10.1038/374517a0
[20] X. Hu, T. Ritz, A. Damjanović, F. Autenrieth, and K.
Schulten, Photosynthetic apparatus of purple bacteria, Q. Rev.
Biophys.
35(1), 1–62 (2002),
https://doi.org/10.1017/S0033583501003754
[21] R. Monshouwer, M. Abrahamsson, F. Van Mourik, and R. van
Grondelle, Superradiance and exciton delocalization in bacterial
photosynthetic light-harvesting systems, J. Phys. Chem. B
101(37),
7241–7248 (1997),
https://doi.org/10.1021/jp963377t
[22] V.I. Novoderezhkin and A.P. Razjivin, Exciton dynamics in
circular aggregates: application to antenna of photosynthetic
purple bacteria, Biophys. J.
68(3), 1089–1100 (1995),
https://doi.org/10.1016/S0006-3495(95)80283-3
[23] M.H.C. Koolhaas, R.N. Frese, G.J.S. Fowler, T.S. Bibby, S.
Georgakopoulou, G. van Der Zwan, C.N. Hunter, and R. van
Grondelle, Identification of the upper exciton component of the
B850 bacteriochlorophylls of the LH2 antenna complex, using a
B800-free mutant of
Rhodobacter sphaeroides,
Biochemistry
37(14), 4693–4698 (1998),
https://doi.org/10.1021/bi973036l
[24] H. Wu, N.R.S. Reddy, and G.J. Small, Direct observation and
hole burning of the lowest exciton level (B870) of the LH2
antenna complex of
Rhodopseudomonas acidophila (Strain
10050), J. Phys. Chem. B
9, 651–656 (1997),
https://doi.org/10.1021/jp962766k
[25] R. Jimenez, S.N. Dikshit, S.E. Bradforth, and G.R. Fleming,
Electronic excitation transfer in the LH2 complex of
Rhodobacter
sphaeroides, J. Phys. Chem.
100(16), 6825–6834
(1996),
https://doi.org/10.1021/jp953074j
[26] D. Rutkauskas, V. Novoderezkhin, R.J. Cogdell, and R. van
Grondelle, Fluorescence spectral fluctuations of single LH2
complexes from
Rhodopseudomonas acidophila strain 10050,
Biochemistry
43, 4431–4438 (2004),
https://doi.org/10.1021/bi0497648
[27] W.E. Moerner and L. Kador, Optical detection and
spectroscopy of single molecules in a solid, Phys. Rev. Lett.
62,
2535–2538 (1989),
https://doi.org/10.1103/physrevlett.62.2535
[28] C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha,
Advances in single-molecule fluorescence methods for molecular
biology, Annu. Rev. Biochem.
77(1), 51–76 (2008),
https://doi.org/10.1146/annurev.biochem.77.070606.101543
[29] M.A. Bopp, A. Sytnik, T.D. Howard, R.J. Cogdell, and R.M.
Hochstrasser, The dynamics of structural deformations of
immobilized single light-harvesting complexes, Proc. Natl. Acad.
Sci.
96(20), 11271–11276 (1999),
https://doi.org/10.1073/pnas.96.20.11271
[30] M.A. Bopp, Y. Jia, L. Li, R.J. Cogdell, and R.M.
Hochstrasser, Fluorescence and photobleaching dynamics of single
light-harvesting complexes, Proc. Natl. Acad. Sci.
94(20),
10630–10635 (1997),
https://doi.org/10.1073/pnas.94.20.10630
[31] D. Rutkauskas, V. Novoderezhkin, R.J. Cogdell, and R. van
Grondelle, Fluorescence spectroscopy of conformational changes
of single LH2 complexes, Biophys. J.
88(1), 422–435
(2005),
https://doi.org/10.1529/biophysj.104.048629
[32] T.P.J. Kruger, V.I. Novoderezhkin, C. Ilioaia, and R. van
Grondelle, Fluorescence spectral dynamics of single LHCII
trimers, Biophys. J.
98(June), 3093–3101 (2010),
https://doi.org/10.1016/j.bpj.2010.03.028
[33] Y. Saga, T. Wazawa, T. Mizoguchi, Y. Ishii, T. Yanagida,
and H. Tamiaki, Spectral heterogeneity in single
light-harvesting chlorosomes from
Chlorobium tepidum,
Photochem. Photobiol.
75(4), 433–436 (2002),
https://doi.org/10.1562/0031-8655(2002)0750433SHISLH2.0.CO2
[34] L. Ying and X.S. Xie, Fluorescence spectroscopy, exciton
dynamics, and photochemistry of single allophycocyanin trimers,
J. Phys. Chem. B
102(50), 10399–10409 (1998),
https://doi.org/10.1021/jp983227d
[35] D. Rutkauskas, J. Olsen, A. Gall, R.J. Cogdell, C.N.
Hunter, and R. van Grondelle, Comparative study of spectral
flexibilities of bacterial light-harvesting complexes:
structural implications, Biophys. J.
90(7), 2463–2474
(2006),
https://doi.org/10.1529/biophysj.105.075895
[36] D. Rutkauskas, V. Novoderezhkin, A. Gall, J. Olsen, R.J.
Cogdell, C.N. Hunter, and R. van Grondelle, Spectral trends in
the fluorescence of single bacterial light-harvesting complexes:
experiments and modified redfield simulations, Biophys. J.
90(7),
2475–2485 (2006),
https://doi.org/10.1529/biophysj.105.075903
[37] D. Rutkauskas, R.J. Cogdell, and R. van Grondelle,
Conformational relaxation of single bacterial light-harvesting
complexes, Biochemistry
45(4), 1082–1086 (2006),
https://doi.org/10.1021/bi0524159
[38] L. Valkunas, J. Janusonis, D. Rutkauskas, and R. van
Grondelle, Protein dynamics revealed in the excitonic spectra of
single LH2 complexes, J. Lumin.
127(1), 269–275 (2007),
https://doi.org/10.1016/j.jlumin.2007.02.032
[39] J. Janusonis, L. Valkunas, D. Rutkauskas, and R. van
Grondelle, Spectral dynamics of individual bacterial
light-harvesting complexes: alternative disorder model, Biophys.
J.
94(4), 1348–1358 (2008),
https://doi.org/10.1529/biophysj.107.108431