[PDF] https://doi.org/10.3952/physics.v58i4.3876

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 58, 318–325 (2018)
 


DICHOTOMOUS DISORDER MODEL FOR SINGLE LIGHT-HARVESTING COMPLEXES
Danielis Rutkauskas
 Institute of Physics, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
 
E-mail: danielis@ar.fi.lt
Received 5 November 2018; accepted 2 January 2019

Photosynthetic organisms conserve the captured energy of solar radiation into stable chemical forms. To do so, they have evolved specialized systems of pigment–protein complexes consisting of light-harvesting antennas and reaction centres. Photosynthetic antennas contain remarkably dense arrangements of light-absorbing pigments held by the protein scaffold, and their function is to absorb light and funnel the excitation energy to the reaction centre. Decades of experimental and theoretical research resulted in a detailed understanding of the energy migration pathways within the photosynthetic apparatus. The key parameters determining the excitation relaxation and transfer are inter-pigment coupling and energetic disorder or non-equality of excitation energies at equivalent pigment sites due to the interaction with the disordered protein scaffold. Circularly symmetric light-harvesting antennas from purple bacteria present a beautiful example of the interplay between these parameters. The spectral signature of this interplay could be observed with the single-molecule fluorescence microscopy techniques. The results of these measurements were interpreted with an intuitively clear dichotomous model of disorder of pigment site energies.
Keywords: photosynthetic, light-harvesting, antenna, energetic disorder, single-molecule
PACS: 87.64.kv, 71.35.Aa, 87.80.Nj

DICHOTOMINIS NETVARKOS MODELIS PAVIENIAMS ŠVIESĄ SUGERIANTIEMS KOMPLEKSAMS
Danielis Rutkauskas

Fizinių ir technologijos mokslų centro Fizikos institutas, Vilnius, Lithuania
 
Fotosintetiniai organizmai transformuoja ir išsaugo sugertą saulės šviesos energiją stabilios cheminės energijos pavidalu. Tam padaryti evoliucijos metu jie išvystė specializuotas pigmentų-baltymų kompleksų sistemas, sudarytas iš šviesą sugeriančių antenų ir reakcijos centrų. Fotosintetinės antenos sudarytos iš tankaus pigmentų tinklo, laikomo baltymo karkaso, o jų funkcija yra sugerti šviesą ir nukreipti sužadinimo energiją į reakcijos centrą. Dešimtmečiai eksperimentinio ir teorinio darbo leido atskleisti detalų energijos pernašos paveikslą fotosintetiniame aparate. Pagrindiniai parametrai, lemiantys sužadinimo energijos relaksaciją ir pernašą, yra tarppigmentinės sąveikos stip­rumas ir energetinė netvarka arba pigmentų, esančių ekvivalentiškose padėtyse, sužadinimo energijos netapatumas dėl sąveikos su netvarkia baltymo matrica. Cilindriškai simetriškos šviesą sugeriančios antenos iš purpurinių bakterijų yra geras šių parametrų sąveiką iliustruojantis pavyzdys. Spektrinė šios sąveikos reprezentacija buvo aiškiai stebima naudojant pavienių molekulių fluorescencijos mikroskopiją. Šių matavimų rezultatai buvo interpretuoti naudojant intuityviai leng­vai suprantamą dichotominį energetinės netvarkos modelį.

References / Nuorodos

[1] E. Rabinowitch and Govindjee, Photosynthesis (Wiley, New York, 1969),
https://doi.org/10.1126/science.169.3948.848
[2] G.F. Moore and G.W. Brudvig, Energy conversion in photosynthesis: a paradigm for solar fuel production, Annu. Rev. Condens. Matter Phys. 2(1), 303–327 (2011),
https://doi.org/10.1146/annurev-conmatphys-062910-140503
[3] V. Sundström, Femtobiology, Annu. Rev. Phys. Chem. 59(1), 53–77 (2008),
https://doi.org/10.1146/annurev.physchem.59.032607.093615
[4] W.F. Watson and R. Livingston, Self-quenching and sensitization of fluorescence of chlorophyll solutions, J. Chem. Phys. 18(6), 802–809 (1950),
https://doi.org/10.1063/1.1747779
[5] W. Kulbrant and D.N. Wang, Three-dimensional structure of plant light-harvesting complex determined by electron crystallography, Nature 350, 130–34 (1991),
https://doi.org/10.1038/350130a0
[6] B.W. Matthews, R.E. Fenna, M.C. Bolognesi, M.F. Schmid, and J.M. Olson, Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii, J. Mol. Biol. 131(2), 259–285 (1979),
https://doi.org/10.1016/0022-2836(79)90076-7
[7] Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An, and W. Chang, Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution, Nature 428(6980), 287–292 (2004),
https://doi.org/10.1038/nature02373
[8] C. Büchel, Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states, Biochemistry 42(44), 13027–13034 (2003),
https://doi.org/10.1021/bi0349468
[9] E. Hofmann, P.M. Wrench, F.P. Sharples, R.G. Hil­ler, W. Welte, and K. Diederichs, Structural basis of light harvesting by carotenoids: peridininchlorophyll-protein from Amphidinium carterae, Science 272, 1788–1791 (1996),
https://doi.org/10.1126/science.272.5269.1788
[10] R. MacColl, Cyanobacterial phycobilisomes, J. Struct. Biol. 124(2–3), 311–334 (1998),
https://doi.org/10.1006/jsbi.1998.4062
[11] G.T. Oostergetel, H. van Amerongen, and E.J. Boe­kema, The chlorosome: A prototype for efficient light harvesting in photosynthesis, Photosynth. Res. 104(2), 245–255 (2010),
https://doi.org/10.1007/s11120-010-9533-0
[12] R. van Grondelle and V.I. Novoderezhkin, Energy transfer in photosynthesis: Experimental insights and quantitative models, Phys. Chem. Chem. Phys. 8(7), 793–807 (2006),
https://doi.org/10.1039/b514032c
[13] T. Gillbro, A.V. Sharkov, I.V. Kryukov, E.V. Kho­roshilov, P.G. Kryukov, R. Fischer, and H. Scheer, Förster energy transfer between neighbouring chromophores in C-phycocyanin trimers, Biochim. Biophys. Acta 1140(3), 321–326 (1993),
https://doi.org/10.1016/0005-2728(93)90072-N
[14] M. Kasha, Energy transfer mechanisms and the molecular exciton model for molecular aggregates, Radiat. Res. 20(1), 55 (1963),
https://doi.org/10.2307/3571331
[15] G.D. Scholes, X.J. Jordanides, and G.R. Fleming, Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies, J. Phys. Chem. B 105(8), 1640–1651 (2001),
https://doi.org/10.1021/jp003571m
[16] W.M. Zhang, T. Meier, V. Chernyak, and S. Mukamel, Exciton migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes, J. Chem. Phys. 108(18), 7763 (1998),
https://doi.org/10.1063/1.476212
[17] M. Yang, A. Damjanović, H.M. Vaswani, and G.R. Fleming, Energy transfer in Photosystem I of cyanobacteria Synechococcus elongatus: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density, Biophys. J. 85(1), 140–158 (2003),
https://doi.org/10.1016/S0006-3495(03)74461-0
[18] R. van Grondelle, J.P. Dekke, T. Gillbro, and V. Sundström, Energy transfer and trapping in photosynthesis, Biochim. Biophys. Acta 8, (1994),
https://doi.org/10.1016/0005-2728(94)90166-x
[19] G. McDermott, S.M. Prince, A.A. Freer, A.M. Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, and N.W. Isaacs, Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria, Nature 374, 517–521 (1995),
https://doi.org/10.1038/374517a0
[20] X. Hu, T. Ritz, A. Damjanović, F. Autenrieth, and K. Schulten, Photosynthetic apparatus of purple bacteria, Q. Rev. Biophys. 35(1), 1–62 (2002),
https://doi.org/10.1017/S0033583501003754
[21] R. Monshouwer, M. Abrahamsson, F. Van Mourik, and R. van Grondelle, Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems, J. Phys. Chem. B 101(37), 7241–7248 (1997),
https://doi.org/10.1021/jp963377t
[22] V.I. Novoderezhkin and A.P. Razjivin, Exciton dynamics in circular aggregates: application to antenna of photosynthetic purple bacteria, Biophys. J. 68(3), 1089–1100 (1995),
https://doi.org/10.1016/S0006-3495(95)80283-3
[23] M.H.C. Koolhaas, R.N. Frese, G.J.S. Fowler, T.S. Bibby, S. Georgakopoulou, G. van Der Zwan, C.N. Hunter, and R. van Grondelle, Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides, Biochemistry 37(14), 4693–4698 (1998),
https://doi.org/10.1021/bi973036l
[24] H. Wu, N.R.S. Reddy, and G.J. Small, Direct observation and hole burning of the lowest exciton level (B870) of the LH2 antenna complex of Rhodopseudomonas acidophila (Strain 10050), J. Phys. Chem. B 9, 651–656 (1997),
https://doi.org/10.1021/jp962766k
[25] R. Jimenez, S.N. Dikshit, S.E. Bradforth, and G.R. Fleming, Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides, J. Phys. Chem. 100(16), 6825–6834 (1996),
https://doi.org/10.1021/jp953074j
[26] D. Rutkauskas, V. Novoderezkhin, R.J. Cogdell, and R. van Grondelle, Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050, Biochemistry 43, 4431–4438 (2004),
https://doi.org/10.1021/bi0497648
[27] W.E. Moerner and L. Kador, Optical detection and spectroscopy of single molecules in a solid, Phys. Rev. Lett. 62, 2535–2538 (1989),
https://doi.org/10.1103/physrevlett.62.2535
[28] C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, Advances in single-molecule fluorescence methods for molecular biology, Annu. Rev. Biochem. 77(1), 51–76 (2008),
https://doi.org/10.1146/annurev.biochem.77.070606.101543
[29] M.A. Bopp, A. Sytnik, T.D. Howard, R.J. Cogdell, and R.M. Hochstrasser, The dynamics of structural deformations of immobilized single light-harvesting complexes, Proc. Natl. Acad. Sci. 96(20), 11271–11276 (1999),
https://doi.org/10.1073/pnas.96.20.11271
[30] M.A. Bopp, Y. Jia, L. Li, R.J. Cogdell, and R.M. Hochstrasser, Fluorescence and photobleaching dynamics of single light-harvesting complexes, Proc. Natl. Acad. Sci. 94(20), 10630–10635 (1997),
https://doi.org/10.1073/pnas.94.20.10630
[31] D. Rutkauskas, V. Novoderezhkin, R.J. Cogdell, and R. van Grondelle, Fluorescence spectroscopy of conformational changes of single LH2 complexes, Biophys. J. 88(1), 422–435 (2005),
https://doi.org/10.1529/biophysj.104.048629
[32] T.P.J. Kruger, V.I. Novoderezhkin, C. Ilioaia, and R. van Grondelle, Fluorescence spectral dynamics of single LHCII trimers, Biophys. J. 98(June), 3093–3101 (2010),
https://doi.org/10.1016/j.bpj.2010.03.028
[33] Y. Saga, T. Wazawa, T. Mizoguchi, Y. Ishii, T. Ya­nagida, and H. Tamiaki, Spectral heterogeneity in single light-harvesting chlorosomes from Chlorobium tepidum, Photochem. Photobiol. 75(4), 433–436 (2002),
https://doi.org/10.1562/0031-8655(2002)0750433SHISLH2.0.CO2
[34] L. Ying and X.S. Xie, Fluorescence spectroscopy, exciton dynamics, and photochemistry of single allophycocyanin trimers, J. Phys. Chem. B 102(50), 10399–10409 (1998),
https://doi.org/10.1021/jp983227d
[35] D. Rutkauskas, J. Olsen, A. Gall, R.J. Cogdell, C.N. Hunter, and R. van Grondelle, Comparative study of spectral flexibilities of bacterial light-harvesting complexes: structural implications, Biophys. J. 90(7), 2463–2474 (2006),
https://doi.org/10.1529/biophysj.105.075895
[36] D. Rutkauskas, V. Novoderezhkin, A. Gall, J. Olsen, R.J. Cogdell, C.N. Hunter, and R. van Grondelle, Spectral trends in the fluorescence of single bacterial light-harvesting complexes: experiments and modified redfield simulations, Biophys. J. 90(7), 2475–2485 (2006),
https://doi.org/10.1529/biophysj.105.075903
[37] D. Rutkauskas, R.J. Cogdell, and R. van Grondelle, Conformational relaxation of single bacterial light-harvesting complexes, Biochemistry 45(4), 1082–1086 (2006),
https://doi.org/10.1021/bi0524159
[38] L. Valkunas, J. Janusonis, D. Rutkauskas, and R. van Grondelle, Protein dynamics revealed in the excitonic spectra of single LH2 complexes, J. Lumin. 127(1), 269–275 (2007),
https://doi.org/10.1016/j.jlumin.2007.02.032
[39] J. Janusonis, L. Valkunas, D. Rutkauskas, and R. van Grondelle, Spectral dynamics of individual bacterial light-harvesting complexes: alternative disorder model, Biophys. J. 94(4), 1348–1358 (2008),
https://doi.org/10.1529/biophysj.107.108431