References
/
Nuorodos
[1] S.D. Stranks and H.J. Snaith, Metal-halide perovskites for
photovoltaic and light-emitting devices, Nat. Nanotech.
10,
391–402 (2015),
https://doi.org/10.1038/nnano.2015.90
[2] Q. Lin, A. Armin, P.L. Burn, and P. Meredith, Organohalide
perovskites for solar energy conversion, Acc. Chem. Res.
49,
545–553 (2016),
https://doi.org/10.1021/acs.accounts.5b00483
[3] B.R. Sutherland and E.H. Sargent, Perovskite photonic
sources, Nat. Photon.
10, 295–302 (2016),
https://doi.org/10.1038/nphoton.2016.62
[4] T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, and D. Cahen,
Hybrid organic–inorganic perovskites: low-cost semiconductors
with intriguing charge-transport properties, Nat. Rev. Mater.
1,
15007 (2016),
https://doi.org/10.1038/natrevmats.2015.7
[5] J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper
Jacobsson, M. Grätzel, and A. Hagfeldt, The rapid evolution of
highly efficient perovskite solar cells, Energy Environ. Sci.
10,
710–727 (2017),
https://doi.org/10.1039/C6EE03397K
[6] M. Saliba, J.-P. Correa-Baena, M. Grätzel, A. Hagfeldt, and
A. Abate, Perovskite solar cells: from the atomic level to film
quality and device performance, Angew. Chem., Int. Ed.
57,
2554–2569 (2018),
https://doi.org/10.1002/anie.201703226
[7] J. Huang, Y. Shao, and Q. Dong, Organometal trihalide
perovskite single crystals: a next wave of materials for 25%
efficiency photovoltaics and applications beyond? J. Phys. Chem.
Lett.
6, 3218–3227 (2015),
https://doi.org/10.1021/acs.jpclett.5b01419
[8] N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, and K. Emery,
Towards stable and commercially available perovskite solar
cells, Nat. Energy
1, 16152 (2016),
https://doi.org/10.1038/nenergy.2016.152
[9] T.C. Sum and N. Mathews, Advancements in perovskite solar
cells: photophysics behind the photovoltaics, Energy Environ.
Sci.
7, 2518–2534 (2014),
https://doi.org/10.1039/C4EE00673A
[10] J.A. Christians, J.S. Manser, and P.V. Kamat, Multifaceted
excited state of CH
3NH
3PbI
3.
Charge separation, recombination, and trapping, J. Phys. Chem.
Lett.
6, 2086–2095 (2015),
https://doi.org/10.1021/acs.jpclett.5b00594
[11] A.R.S. Kandada and A. Petrozza, Photophysics of hybrid lead
halide perovskites: The role of microstructure, Acc. Chem. Res.
49, 536–544 (2016),
https://doi.org/10.1021/acs.accounts.5b00464
[12] B. Yang, O. Dyck, J. Poplawsky, J. Keum, A. Puretzky, S.
Das, I. Ivanov, C. Rouleau, G. Duscher, D. Geohegan, and K.
Xiao, Perovskite solar cells with near 100% internal quantum
efficiency based on large single crystalline grains and vertical
bulk heterojunctions, J. Am. Chem. Soc.
137, 9210–9213
(2015),
https://doi.org/10.1021/jacs.5b03144
[13] H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z.
Hong, J. You, Y. Liu, and Y. Yang, Interface engineering of
highly efficient perovskite solar cells, Science
345,
542–546 (2014),
https://doi.org/10.1126/science.1254050
[14] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J.
Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak,
M.A. Alam, H.-L. Wang, and A.D. Mohite, High-efficiency
solution-processed perovskite solar cells with millimeter-scale
grains, Science
347, 522–525 (2015),
https://doi.org/10.1126/science.aaa0472
[15] X. Wu, M.T. Trinh, D. Niesner, H. Zhu, Z. Norman, J.S.
Owen, O. Yaffe, B.J. Kudisch, and X.-Y. Zhu, Trap states in lead
iodide perovskites, J. Am. Chem. Soc.
137, 2089–2096
(2015),
https://doi.org/10.1021/ja512833n
[16] S. Das, G. Gu, P.C. Joshi, B. Yang, T. Aytug, C.M. Rouleau,
D.B. Geohegan, and K. Xiao, Low thermal budget, photonic-cured
compact TiO
2 layers for high-efficiency perovskite
solar cells, J. Mater. Chem. A
4, 9685–9690 (2016),
https://doi.org/10.1039/C6TA02105K
[17] M.J. Simpson, B. Doughty, B. Yang, K. Xiao, and Y.-Z. Ma,
Spatial localization of excitons and charge carriers in hybrid
perovskite thin films, J. Phys. Chem. Lett.
6, 3041–3047
(2015),
https://doi.org/10.1021/acs.jpclett.5b01050
[18] S. Nah, B. Spokoyny, C. Stoumpos, C.M.M. Soe, M.
Kanatzidis, and E. Harel, Spatially segregated free-carrier and
exciton populations in individual lead halide perovskite grains,
Nat. Photon.
11, 285 (2017),
https://doi.org/10.1038/nphoton.2017.36
[19] M.J. Simpson, B. Doughty, B. Yang, K. Xiao, and Y.-Z. Ma,
Separation of distinct photoexcitation species in femtosecond
transient absorption microscopy, ACS Photonics
3,
434–442 (2016),
https://doi.org/10.1021/acsphotonics.5b00638
[20] S. Draguta, S. Thakur, Y. Morozov, Y. Wang, J.S. Manser,
P.V. Kamat, and M. Kuno, Spatially non-uniform trap state
densities in solution-processed hybrid perovskite thin films, J.
Phys. Chem. Lett.
7, 715–721 (2016),
https://doi.org/10.1021/acs.jpclett.5b02888
[21] M.J. Simpson, B. Doughty, B. Yang, K. Xiao, and Y.-Z. Ma,
Imaging electronic trap states in perovskite thin films with
combined fluorescence and femtosecond transient absorption
microscopy, J. Phys. Chem. Lett.
7, 1725–1731 (2016),
https://doi.org/10.1021/acs.jpclett.6b00715
[22] D.W. deQuilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka,
G.E. Eperon, M.E. Ziffer, H.J. Snaith, and D.S. Ginger, Impact
of microstructure on local carrier lifetime in perovskite solar
cells, Science
348, 683–686 (2015),
https://doi.org/10.1126/science.aaa5333
[23] M. Vrućinić, C. Matthiesen, A. Sadhanala, G. Divitini, S.
Cacovich, S.E. Dutton, C. Ducati, M. Atatüre, H. Snaith, R.H.
Friend, H. Sirringhaus, and F. Deschler, Local versus long-range
diffusion effects of photoexcited states on radiative
recombination in organic–inorganic lead halide perovskites,
Adv. Sci. 1500136 (2015),
https://doi.org/10.1002/advs.201500136
[24] C. Schnedermann, J.M. Lim, T. Wende, A.S. Duarte, L. Ni,
Q. Gu, A. Sadhanala, A. Rao, and P. Kukura, Sub-10 femtosecond
time-resolved vibronic microscopy, J. Phys. Chem. Lett.
7,
4854–4859 (2016),
https://doi.org/10.1021/acs.jpclett.6b02387
[25] B.R. Watson, B. Yang, K. Xiao, Y.-Z. Ma, B. Dough ty, and
T.R. Calhoun, Elucidation of perovskite film micro-orientations
using two-photon total internal reflectance fluorescence
microscopy, J. Phys. Chem. Lett.
6, 3283–3288 (2015),
https://doi.org/10.1021/acs.jpclett.5b01474
[26] S. Nah, B. Spokoyny, X. Jiang, C. Stoumpos, C.M.M. Soe,
M.G. Kanatzidis, and E. Harel, Transient sub-bandgap states in
halide perovskite thin films, Nano Lett.
18, 827–831
(2018),
https://doi.org/10.1021/acs.nanolett.7b04078
[27] Z. Guo, J.S. Manser, Y. Wan, P.V. Kamat, and L. Huang,
Spatial and temporal imaging of long-range charge transport in
perovskite thin films by ultrafast microscopy, Nat. Commun.
6,
7471 (2015),
https://doi.org/10.1038/ncomms8471
[28] Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang,
Long-range hot-carrier transport in hybrid perovskites
visualized by ultrafast microscopy, Science
356, 59–62
(2017),
https://doi.org/10.1126/science.aam7744
[29] Z. Guo, N. Zhou, O.F. Williams, J. Hu, W. You, and A.M.
Moran, Imaging carrier diffusion in perovskites with a
diffractive optic-based transient absorption microscope, J.
Phys. Chem. C
122, 10650–10656 (2018),
https://doi.org/10.1021/acs.jpcc.8b03643
[30] M.J. Simpson, B. Doughty, S. Das, K. Xiao, and Y.-Z. Ma,
Separating bulk and surface contributions to electronic
excited-state processes in hybrid mixed perovskite thin films
via multimodal all-optical imaging, J. Phys. Chem. Lett.
8,
3299−3305 (2017),
https://doi.org/10.1021/acs.jpclett.7b01368
[31] B.J. Foley, S. Cuthriell, S. Yazdi, A.Z. Chen, S.M.
Guthrie, X. Deng, G. Giri, S.-H. Lee, K. Xiao, B. Doughty, Y.-Z.
Ma, and J.J. Choi, Impact of crystallographic orientation
disorders on electronic heterogeneities in metal halide
perovskite thin films, Nano Lett.
18, 6271–6278 (2018),
https://doi.org/10.1021/acs.nanolett.8b02417
[32] W. Min, C.W. Freudiger, S. Lu, and X.S. Xie, Coherent
nonlinear optical imaging: beyond fluorescence microscopy,
Annu. Rev. Phys. Chem.
62, 507–530 (2011),
https://doi.org/10.1146/annurev.physchem.012809.103512
[33] B. Doughty, M.J. Simpson, B. Yang, K. Xiao, and Y.-Z. Ma,
Simplification of femtosecond transient absorption microscopy
data from CH
3NH
3PbI
3 perovskite
thin films into decay associated amplitude maps, Nanotechnology
27, 114002 (2016),
https://doi.org/10.1088/0957-4484/27/11/114002
[34] E.M. Hutter, G.E. Eperon, S.D. Stranks, and T.J. Savenije,
Charge carriers in planar and meso-structured organic–inorganic
perovskites: mobilities, lifetimes, and concentrations of trap
states, J. Phys. Chem. Lett.
6, 3082–3090 (2015),
https://doi.org/10.1021/acs.jpclett.5b01361
[35] X.M. Wen, R. Sheng, A.W.Y. Ho-Baillie, A. Benda, S. Woo,
Q.S. Ma, S.J. Huang, and M.A. Green, Morphology and carrier
extraction study of organic-inorganic metal halide perovskite by
one- and two-photon fluorescence microscopy, J. Phys. Chem.
Lett.
5, 3849–3853 (2014),
https://doi.org/10.1021/jz502014r
[36] Y.-Z. Ma, C.D. Spataru, L. Valkunas, S.G. Louie, and G.R.
Fleming, Spectroscopy of zigzag single-walled carbon nanotubes:
comparing femtosecond transient absorption spectra with
ab
initio calculations, Phys. Rev. B
74, 085402
(2006),
https://doi.org/10.1103/PhysRevB.74.085402
[37] M. Ghanassi, M.C. Schanne-Klein, F. Hache, A.I. Ekimov, D.
Ricard, and C. Flytzanis, Time-resolved measurements of carrier
recombination in experimental semiconductor-doped glasses:
Confirmation of the role of Auger recombination, Appl. Phys.
Lett.
62, 78–80 (1993),
https://doi.org/10.1063/1.108833
[38] V.I. Klimov, A.A. Mikhailovsky, D.W. McBranch, C.A.
Leatherdale, and M.G. Bawendi, Quantization of multiparticle
Auger rates in semiconductor quantum dots, Science
287,
1011–1013 (2000),
https://doi.org/10.1126/science.287.5455.1011
[39] H. Htoon, J.A. Hollingsworth, R. Dickerson, and V.I.
Klimov, Effect of zero- to one-dimensional transformation on
multiparticle Auger recombination in semiconductor quantum rods,
Phys. Rev. Lett.
91, 227401 (2003),
https://doi.org/10.1103/PhysRevLett.91.227401
[40] Y.-Z. Ma, L. Valkunas, S.M. Bachilo, and G.R. Fleming,
Exciton binding energy in semiconducting single-walled carbon
nanotubes, J. Phys. Chem. B
109, 15671–15674 (2005),
https://doi.org/10.1021/jp053011t
[41] A. Haug, Auger recombination in direct-gap semiconductors:
band-structure effects, J. Phys. C
16, 4159 (1983),
https://doi.org/10.1088/0022-3719/16/21/017
[42] M. Takeshima, Unified theory of the impurity and phonon
scattering effects on Auger recombination in semiconductors,
Phys. Rev. B
25, 5390–5414 (1982),
https://doi.org/10.1103/PhysRevB.25.5390
[43] L.M. Herz, Charge-carrier dynamics in organic-inorganic
metal halide perovskites, Annu. Rev. Phys. Chem.
67,
65–89 (2016),
https://doi.org/10.1146/annurev-physchem-040215-112222
[44] R.L. Milot, G.E. Eperon, H.J. Snaith, M.B. Johnston, and
L.M. Herz, Temperature-dependent charge-carrier dynamics in CH
3NH
3PbI
3
perovskite thin films, Adv. Funct. Mater.
25, 6218–6227
(2015),
https://doi.org/10.1002/adfm.201502340
[45] W. Rehman, R.L. Milot, G.E. Eperon, C. Wehrenfennig, J.L.
Boland, H.J. Snaith, M.B. Johnston, and L.M. Herz,
Charge-carrier dynamics and mobilities in formamidinium lead
mixed-halide perovskites, Adv. Mater.
27, 7938–7944
(2015),
https://doi.org/10.1002/adma.201502969
[46] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou,
M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J.
Snaith, Electron-hole diffusion lengths exceeding 1 micrometer
in an organometal trihalide perovskite absorber, Science
342,
341–344 (2013),
https://doi.org/10.1126/science.1243982