[PDF] https://doi.org/10.3952/physics.v58i4.3877

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 58, 326–336 (2018)
 


ON THE ORIGIN OF SPATIALLY DEPENDENT ELECTRONIC EXCITED-STATE DYNAMICS IN MIXED HYBRID PEROVSKITE THIN FILMS*
 
Ying-Zhong Maa, Benjamin Doughtya, Mary Jane Simpsona, Sanjib Dasb, and Kai Xiaoc
 aChemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
 
bDepartment of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996
 
cCenter for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
 
E-mail: may1@ornl.gov
 Received 15 November 2018; accepted 2 January 2019

The fundamental photophysics underlying the remarkable performance of organic-inorganic hybrid perovskites in optoelectronic device applications has been increasingly studied using complementary spectroscopic techniques. However, the spatially heterogeneous polycrystalline morphology of the solution-processed thin films is often overlooked in conventional ensemble measurements and therefore the reported results are averaged over hundreds or even thousands of nano- and micro-crystalline grains. Here, we apply femtosecond transient absorption microscopy to spatially and temporally probe ultrafast electronic excited-state dynamics in chloride containing mixed lead halide perovskite (CH3NH3PbI3–xClx) thin films. We found that the electronic excited-state relaxation kinetics are extremely sensitive to the spatial location probed, which was manifested by position-dependent transient absorption signal amplitude and decay behaviour, along with an obvious rise component at some positions. The analysis of transient absorption kinetics acquired at several distinct spatial positions enabled us to identify Auger recombination as the dominant mechanism underlying the initial portions of the spatially dependent dynamics with variable rate constants. The different rates observed suggest occurrence of distinct local electronic structures and variable contributions from impurities/defects and phonons in this nonlinear dynamical process.
Keywords: transient absorption microscopy, ultrafast electronic excited-state dynamics, Auger recombination, metal halide perovskites

*This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide licence to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://energy.gov/downloads/doe-public-access-plan).

DĖL ERDVIŠKAI PRIKLAUSOMŲ ELEKTRONINIŲ SUŽADINTŲ BŪSENŲ DINAMIKOS MIŠRIŲJŲ HIBRIDINIŲ PEROVSKITŲ PLONUOSIUOSE SLUOKSNIUOSE KILMĖS
 Ying-Zhong Maa, Benjamin Doughtya, Mary Jane Simpsona, Sanjib Dasb, Kai Xiaoa

aOuk Ridžo nacionalinė laboratorija, Ouk Ridžas, Tenesis
 
bTenesio universitetas, Noksvilis, Tenesis
 

References / Nuorodos

[1] S.D. Stranks and H.J. Snaith, Metal-halide pe­rovskites for photovoltaic and light-emitting devices, Nat. Nanotech. 10, 391–402 (2015),
https://doi.org/10.1038/nnano.2015.90
[2] Q. Lin, A. Armin, P.L. Burn, and P. Meredith, Organohalide perovskites for solar energy conversion, Acc. Chem. Res. 49, 545–553 (2016),
https://doi.org/10.1021/acs.accounts.5b00483
[3] B.R. Sutherland and E.H. Sargent, Perovskite photonic sources, Nat. Photon. 10, 295–302 (2016),
https://doi.org/10.1038/nphoton.2016.62
[4] T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, and D. Cahen, Hybrid organic–inorganic perov­skites: low-cost semiconductors with intriguing charge-transport properties, Nat. Rev. Mater. 1, 15007 (2016),
https://doi.org/10.1038/natrevmats.2015.7
[5] J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, and A. Hagfeldt, The rapid evolution of highly efficient perov­skite solar cells, Energy Environ. Sci. 10, 710–727 (2017),
https://doi.org/10.1039/C6EE03397K
[6] M. Saliba, J.-P. Correa-Baena, M. Grätzel, A. Hag­feldt, and A. Abate, Perovskite solar cells: from the atomic level to film quality and device performance, Angew. Chem., Int. Ed. 57, 2554–2569 (2018),
https://doi.org/10.1002/anie.201703226
[7] J. Huang, Y. Shao, and Q. Dong, Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond? J. Phys. Chem. Lett. 6, 3218–3227 (2015),
https://doi.org/10.1021/acs.jpclett.5b01419
[8] N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, and K. Emery, Towards stable and commercially available perovskite solar cells, Nat. Energy 1, 16152 (2016),
https://doi.org/10.1038/nenergy.2016.152
[9] T.C. Sum and N. Mathews, Advancements in pe­rovskite solar cells: photophysics behind the photovoltaics, Energy Environ. Sci. 7, 2518–2534 (2014),
https://doi.org/10.1039/C4EE00673A
[10] J.A. Christians, J.S. Manser, and P.V. Kamat, Multifaceted excited state of CH3NH3PbI3. Charge separation, recombination, and trapping, J. Phys. Chem. Lett. 6, 2086–2095 (2015),
https://doi.org/10.1021/acs.jpclett.5b00594
[11] A.R.S. Kandada and A. Petrozza, Photophysics of hybrid lead halide perovskites: The role of microstructure, Acc. Chem. Res. 49, 536–544 (2016),
https://doi.org/10.1021/acs.accounts.5b00464
[12] B. Yang, O. Dyck, J. Poplawsky, J. Keum, A. Pu­retz­ky, S. Das, I. Ivanov, C. Rouleau, G. Duscher, D. Geo­hegan, and K. Xiao, Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions, J. Am. Chem. Soc. 137, 9210–9213 (2015),
https://doi.org/10.1021/jacs.5b03144
[13] H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Interface engineering of highly efficient perov­skite solar cells, Science 345, 542–546 (2014),
https://doi.org/10.1126/science.1254050
[14] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neu­kirch, G. Gupta, J.J. Crochet, M. Chho­walla, S. Tretiak, M.A. Alam, H.-L. Wang, and A.D. Mo­hite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science 347, 522–525 (2015),
https://doi.org/10.1126/science.aaa0472
[15] X. Wu, M.T. Trinh, D. Niesner, H. Zhu, Z. Norman, J.S. Owen, O. Yaffe, B.J. Kudisch, and X.-Y. Zhu, Trap states in lead iodide perov­skites, J. Am. Chem. Soc. 137, 2089–2096 (2015),
https://doi.org/10.1021/ja512833n
[16] S. Das, G. Gu, P.C. Joshi, B. Yang, T. Aytug, C.M. Rouleau, D.B. Geohegan, and K. Xiao, Low thermal budget, photonic-cured compact TiO2 layers for high-efficiency perovskite solar cells, J. Mater. Chem. A 4, 9685–9690 (2016),
https://doi.org/10.1039/C6TA02105K
[17] M.J. Simpson, B. Doughty, B. Yang, K. Xiao, and Y.-Z. Ma, Spatial localization of excitons and charge carriers in hybrid perovskite thin films, J. Phys. Chem. Lett. 6, 3041–3047 (2015),
https://doi.org/10.1021/acs.jpclett.5b01050
[18] S. Nah, B. Spokoyny, C. Stoumpos, C.M.M. Soe, M. Kanatzidis, and E. Harel, Spatially segregated free-carrier and exciton populations in individual lead halide perovskite grains, Nat. Photon. 11, 285 (2017),
https://doi.org/10.1038/nphoton.2017.36
[19] M.J. Simpson, B. Doughty, B. Yang, K. Xiao, and Y.-Z. Ma, Separation of distinct photoexcitation species in femtosecond transient absorption microscopy, ACS Photonics 3, 434–442 (2016),
https://doi.org/10.1021/acsphotonics.5b00638
[20] S. Draguta, S. Thakur, Y. Morozov, Y. Wang, J.S. Manser, P.V. Kamat, and M. Kuno, Spatially non-uniform trap state densities in solution-processed hybrid perovskite thin films, J. Phys. Chem. Lett. 7, 715–721 (2016),
https://doi.org/10.1021/acs.jpclett.5b02888
[21] M.J. Simpson, B. Doughty, B. Yang, K. Xiao, and Y.-Z. Ma, Imaging electronic trap states in pe­rovskite thin films with combined fluorescence and femtosecond transient absorption microscopy, J. Phys. Chem. Lett. 7, 1725–1731 (2016),
https://doi.org/10.1021/acs.jpclett.6b00715
[22] D.W. deQuilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon, M.E. Ziffer, H.J. Snaith, and D.S. Ginger, Impact of microstructure on local carrier lifetime in perovskite solar cells, Science 348, 683–686 (2015),
https://doi.org/10.1126/science.aaa5333
[23] M. Vrućinić, C. Matthiesen, A. Sadhanala, G. Di­vitini, S. Cacovich, S.E. Dutton, C. Ducati, M. Ata­türe, H. Snaith, R.H. Friend, H. Sirringhaus, and F. Deschler, Local versus long-range diffusion effects of photoexcited states on radiative recombination in organic–inorganic lead halide pe­rovskites, Adv. Sci. 1500136 (2015),
https://doi.org/10.1002/advs.201500136
[24] C. Schnedermann, J.M. Lim, T. Wende, A.S. Du­ar­te, L. Ni, Q. Gu, A. Sadhanala, A. Rao, and P. Ku­ku­ra, Sub-10 femtosecond time-resolved vibronic microscopy, J. Phys. Chem. Lett. 7, 4854–4859 (2016),
https://doi.org/10.1021/acs.jpclett.6b02387
[25] B.R. Watson, B. Yang, K. Xiao, Y.-Z. Ma, B. Dough­ ty, and T.R. Calhoun, Elucidation of perovskite film micro-orientations using two-photon total internal reflectance fluorescence microscopy, J. Phys. Chem. Lett. 6, 3283–3288 (2015),
https://doi.org/10.1021/acs.jpclett.5b01474
[26] S. Nah, B. Spokoyny, X. Jiang, C. Stoumpos, C.M.M. Soe, M.G. Kanatzidis, and E. Harel, Transient sub-bandgap states in halide perov­skite thin films, Nano Lett. 18, 827–831 (2018),
https://doi.org/10.1021/acs.nanolett.7b04078
[27] Z. Guo, J.S. Manser, Y. Wan, P.V. Kamat, and L. Huang, Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy, Nat. Commun. 6, 7471 (2015),
https://doi.org/10.1038/ncomms8471
[28] Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang, Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy, Science 356, 59–62 (2017),
https://doi.org/10.1126/science.aam7744
[29] Z. Guo, N. Zhou, O.F. Williams, J. Hu, W. You, and A.M. Moran, Imaging carrier diffusion in pe­rovskites with a diffractive optic-based transient absorption microscope, J. Phys. Chem. C 122, 10650–10656 (2018),
https://doi.org/10.1021/acs.jpcc.8b03643
[30] M.J. Simpson, B. Doughty, S. Das, K. Xiao, and Y.-Z. Ma, Separating bulk and surface contributions to electronic excited-state processes in hybrid mixed perovskite thin films via multimodal all-optical imaging, J. Phys. Chem. Lett. 8, 3299−3305 (2017),
https://doi.org/10.1021/acs.jpclett.7b01368
[31] B.J. Foley, S. Cuthriell, S. Yazdi, A.Z. Chen, S.M. Guthrie, X. Deng, G. Giri, S.-H. Lee, K. Xiao, B. Doughty, Y.-Z. Ma, and J.J. Choi, Impact of crystallographic orientation disorders on electronic heterogeneities in metal halide perovskite thin films, Nano Lett. 18, 6271–6278 (2018),
https://doi.org/10.1021/acs.nanolett.8b02417
[32] W. Min, C.W. Freudiger, S. Lu, and X.S. Xie, Coherent nonlinear optical imaging: beyond fluo­rescence microscopy, Annu. Rev. Phys. Chem. 62, 507–530 (2011),
https://doi.org/10.1146/annurev.physchem.012809.103512
[33] B. Doughty, M.J. Simpson, B. Yang, K. Xiao, and Y.-Z. Ma, Simplification of femtosecond transient absorption microscopy data from CH3NH3PbI3 perovskite thin films into decay associated amplitude maps, Nanotechnology 27, 114002 (2016),
https://doi.org/10.1088/0957-4484/27/11/114002
[34] E.M. Hutter, G.E. Eperon, S.D. Stranks, and T.J. Savenije, Charge carriers in planar and meso-structured organic–inorganic perovskites: mobilities, lifetimes, and concentrations of trap states, J. Phys. Chem. Lett. 6, 3082–3090 (2015),
https://doi.org/10.1021/acs.jpclett.5b01361
[35] X.M. Wen, R. Sheng, A.W.Y. Ho-Baillie, A. Benda, S. Woo, Q.S. Ma, S.J. Huang, and M.A. Green, Morphology and carrier extraction study of organic-inorganic metal halide perovskite by one- and two-photon fluorescence microscopy, J. Phys. Chem. Lett. 5, 3849–3853 (2014),
https://doi.org/10.1021/jz502014r
[36] Y.-Z. Ma, C.D. Spataru, L. Valkunas, S.G. Louie, and G.R. Fleming, Spectroscopy of zigzag single-walled carbon nanotubes: comparing femtosecond transient absorption spectra with ab initio calculations, Phys. Rev. B 74, 085402 (2006),
https://doi.org/10.1103/PhysRevB.74.085402
[37] M. Ghanassi, M.C. Schanne-Klein, F. Hache, A.I. Ekimov, D. Ricard, and C. Flytzanis, Time-resolved measurements of carrier recombination in experimental semiconductor-doped glasses: Confirmation of the role of Auger recombination, Appl. Phys. Lett. 62, 78–80 (1993),
https://doi.org/10.1063/1.108833
[38] V.I. Klimov, A.A. Mikhailovsky, D.W. McBranch, C.A. Leatherdale, and M.G. Ba­wendi, Quan­tization of multiparticle Auger rates in semiconductor quantum dots, Science 287, 1011–1013 (2000),
https://doi.org/10.1126/science.287.5455.1011
[39] H. Htoon, J.A. Hollingsworth, R. Dickerson, and V.I. Klimov, Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods, Phys. Rev. Lett. 91, 227401 (2003),
https://doi.org/10.1103/PhysRevLett.91.227401
[40] Y.-Z. Ma, L. Valkunas, S.M. Bachilo, and G.R. Fleming, Exciton binding energy in semiconducting single-walled carbon nanotubes, J. Phys. Chem. B 109, 15671–15674 (2005),
https://doi.org/10.1021/jp053011t
[41] A. Haug, Auger recombination in direct-gap semi­conductors: band-structure effects, J. Phys. C 16, 4159 (1983),
https://doi.org/10.1088/0022-3719/16/21/017
[42] M. Takeshima, Unified theory of the impurity and phonon scattering effects on Auger recombination in semiconductors, Phys. Rev. B 25, 5390–5414 (1982),
https://doi.org/10.1103/PhysRevB.25.5390
[43] L.M. Herz, Charge-carrier dynamics in organic-inorganic metal halide perovskites, Annu. Rev. Phys. Chem. 67, 65–89 (2016),
https://doi.org/10.1146/annurev-physchem-040215-112222
[44] R.L. Milot, G.E. Eperon, H.J. Snaith, M.B. Johns­ton, and L.M. Herz, Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perov­skite thin films, Adv. Funct. Mater. 25, 6218–6227 (2015),
https://doi.org/10.1002/adfm.201502340
[45] W. Rehman, R.L. Milot, G.E. Eperon, C. Wehren­fennig, J.L. Boland, H.J. Snaith, M.B. John­ston, and L.M. Herz, Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites, Adv. Mater. 27, 7938–7944 (2015),
https://doi.org/10.1002/adma.201502969
[46] S.D. Stranks, G.E. Eperon, G. Grancini, C. Me­ne­laou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science 342, 341–344 (2013),
https://doi.org/10.1126/science.1243982