[PDF] https://doi.org/10.3952/physics.v58i4.3879

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 58, 346–357 (2018)
 

 
DARK STATES OF SYMMETRIC POLYMETHINE DYES REVEALED BY PUMP–DUMP–PROBE SPECTROSCOPY
 
Kipras Redeckasa, Vladislava Voiciuka, Alexander A. Ishchenkob, and Mikas Vengrisa
 aLaser Research Center, Faculty of Physics, Vilnius University, Saulėtekio 10, 10223 Vilnius, Lithuania
 
bInstitute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska St. 5, 02094 Kyiv, Ukraine
 
E-mail: mikas.vengris@ff.vu.lt
Received 7 December 2018; accepted 2 January 2019

We have applied three-pulse transient absorption spectroscopy to investigate the ultrafast photoisomerization dynamics in two symmetric polymethine dyes. Pump–deplete–probe experiments have revealed that the  excited state manifold of these molecules contains two closely lying excited states in the dynamic equilibrium. One of these states is emissive, while the other is largely dark. It is the dark state that ultimately results in the photoisomer formation and is the main channel of excited state decay in these dyes. We have shown that excited state populations do flow between these two states and therefore it can be inferred that the photoisomerization pathway is not predetermined by ground state distortions of the molecular structure. The decision whether the molecule will isomerize or not seems to be taken in the excited state. Global analysis of three-pulse transient data allowed us to determine the spectra of the excited and ground intermediate states and build a comprehensive picture of photoinduced dynamics in symmetric polymethine dyes.
Keywords: three-pulse transient absorption spectroscopy, polymethine dyes
PACS: 82.53.Uv

TAMSIŲJŲ BŪSENŲ POLIMETININIUOSE DAŽIKLIUOSE ATSKLEIDIMAS, PANAUDOJANT ŽADINIMO–EMISIJOS STIMULIAVIMO–ZONDAVIMO SPEKTROSKOPIJĄ
Kipras Redeckasa, Vladislava Voiciuka, Alexander A. Ishchenkob, Mikas Vengrisa

aVilniaus universiteto Fizikos fakulteto Lazerinių tyrimų centras, Vilnius, Lietuva
bUkrainos nacionalinės mokslų akademijos Organinės chemijos institutas, Kijevas, Ukraina
 
Darbe tirta dviejų simetrinių polimetininių dažiklių fotoizomerizacija trijų impulsų kinetinės sugerties spekt­roskopijos metodu. Žadinimo–emisijos stimuliavimo–zondavimo eksperimentai parodė, kad šių molekulių žemiausių sužadintų būsenų sistemą sudaro dvi energetiškai artimos sužadintos būsenos, tarp kurių yra dinaminė pusiausvyra. Viena iš šių būsenų pasižymi emisija, o kita – beveik ne. Tamsioji būsena yra molekulės fotoizomero prekursorius, ir būtent jos metu šiose molekulėse relaksuoja didžioji dalis sužadintų būsenų. Taip pat parodyta, kad tarp šių būsenų egzistuoja dinaminė pusiausvyra, o tai reiškia, kad fotoizomerizacijos vyksmo iš anksto nelemia molekulės geometrinė konfigūracija pagrindinėje būsenoje. Molekulė „apsisprendžia“, ar jai izomerizuotis, ar ne jau sužadintoje būsenoje. Panaudojant globaliąją trijų impulsų kinetinės spektroskopijos duomenų analizę, buvo nustatyti tarpinių fotoreakcijos produktų spektrai pagrindinėje ir sužadintoje būsenose bei sukurtas detalus fotoindukuotos dinamikos simetriniuose polimetininiuose dažikliuose modelis.

References / Nuorodos

[1] A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, and G.B. Behera, Cyanines during the 1990s: A review, Chem. Rev. 100, 1973–2012 (2000),
https://doi.org/10.1021/cr990402t
[2] V. Shirinian and A. Shimkin, in: Heterocyclic Polymethine Dyes, ed. L. Strekowski (Springer Berlin Heidelberg, 2008) pp. 75–105,
https://www.springer.com/gp/book/9783540790631
[3] M.Y. Berezin and S. Achilefu, Fluorescence lifetime measurements and biological imaging, Chem. Rev. 110, 2641–2684 (2010),
https://doi.org/10.1021/cr900343z
[4] H. Kobayashi, M. Ogawa, R. Alford, P.L. Choyke, and Y. Urano, New strategies for fluorescent probe design in medical diagnostic imaging, Chem. Rev. 110, 2620–2640 (2010),
https://doi.org/10.1021/cr900263j
[5] A. Hawe, M. Sutter, and W. Jiskoot, Extrinsic fluorescent dyes as tools for protein characterization, Pharm. Res. 25, 1487–1499 (2008),
https://doi.org/10.1007/s11095-007-9516-9
[6] Z. Guo, S. Park, J. Yoon, and I. Shin, Recent progress in the development of near-infrared fluorescent probes for bioimaging applications, Chem. Soc. Rev. 43, 16–29 (2014),
https://doi.org/10.1039/C3CS60271K
[7] A.S. Tatikolov, Polymethine dyes as spectral-fluorescent probes for biomacromolecules, J. Photochem. Photobiol. C 13, 55–90 (2012),
https://doi.org/10.1016/j.jphotochemrev.2011.11.001
[8] S. van de Linde, S. Aufmkolk, C. Franke, T. Holm, T. Klein, A. Löschberger, S. Proppert, S. Wolter, and M. Sauer, Investigating cellular structures at the nanoscale with organic fluorophores, Chem. Biol. 20, 8–18 (2013),
https://doi.org/10.1016/j.chembiol.2012.11.004
[9] M. Ptaszek, in: Progress in Molecular Biology and Translational Science, ed. M.C. Morris (Academic Press, 2013) pp. 59–108,
https://doi.org/10.1016/B978-0-12-386932-6.00003-X
[10] J. Han and K. Burgess, Fluorescent indicators for intracellular pH, Chem. Rev. 110, 2709–2728 (2010),
https://doi.org/10.1021/cr900249z
[11] M.S.T. Gonçalves, Fluorescent labeling of biomolecules with organic probes, Chem. Rev. 109, 190–212 (2009),
https://doi.org/10.1021/cr0783840
[12] S. Yao and K.D. Belfield, Two-photon fluorescent probes for bioimaging, Eur. J. Org. Chem. 2012, 3199–3217 (2012),
https://doi.org/10.1002/ejoc.201200281
[13] R.M. Clegg, in: Laboratory Techniques in Biochemistry and Molecular Biology, ed. T.W.J. Gadella (Elsevier, 2009) pp. 1–57,
https://doi.org/10.1016/S0075-7535(08)00001-6
[14] R.M. Clegg, Fluorescence resonance energy transfer, Curr. Opin. Biotechnol. 6, 103–110 (1995),
https://doi.org/10.1016/0958-1669(95)80016-6
[15] H. Wallrabe and A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy, Curr. Opin. Biotechnol. 16, 19–27 (2005),
https://doi.org/10.1016/j.copbio.2004.12.002
[16] J.A. Levitt, D.R. Matthews, S.M. Ameer-Beg, and K. Suhling, Fluorescence lifetime and polarization-resolved imaging in cell biology, Curr. Opin. Biotechnol. A 20, 28–36 (2009),
https://doi.org/10.1016/j.copbio.2009.01.004
[17] R.M. Clegg, O. Holub, and C. Gohlke, in: Methods in Enzymology, ed. I.P. Gerard Marriott (Academic Press, 2003) pp. 509–542,
https://doi.org/10.1016/S0076-6879(03)60126-6
[18] J.L. Bricks, A.D. Kachkovskii, Y.L. Slominskii, A.O. Gerasov, and S.V. Popov, Molecular design of near infrared polymethine dyes: A review, Dyes Pigments 121, 238–255 (2015),
https://doi.org/10.1016/j.dyepig.2015.05.016
[19] S. Karaca and N. Elmacı, A computational study on the excited state properties of a cationic cyanine dye: TTBC, Comput. Theor. Chem. 964, 160–168 (2011),
https://doi.org/10.1016/j.comptc.2010.12.016
[20] V.V. Egorov, Optical line shapes for polymethine dyes and their aggregates: Novel theory of quantum transitions and its correlation with experiment, J. Lumin. 131, 543–547 (2011),
https://doi.org/10.1016/j.jlumin.2010.09.001
[21] E.E. Jelley, Molecular, nematic and crystal states of 1,1′-diethyl-ψ-cyanine chloride, Nature 139, 631–631 (1937),
https://doi.org/10.1038/139631b0
[22] G. Scheibe, L. Kandler, and H. Ecker, Polymerisation und polymere Adsorption als Ursache neuartiger Absorptionsbanden von organischen Farbstoffen, Naturwissenschaften 25, 75–75 (1937),
https://doi.org/10.1007/BF01493278
[23] L. Zechmeister and J.H. Pinckard, On stereoisomerism in the cyanine dye series, Experientia 9, 16–17 (1953),
https://doi.org/10.1007/BF02147696
[24] C.J. Tredwell and C.M. Keary, Picosecond time resolved fluorescence lifetimes of the polymethine and related dyes, Chem. Phys. 43, 307–316 (1979),
https://doi.org/10.1016/0301-0104(79)85199-X
[25] D.N. Dempster, T. Morrow, R. Rankin, and G.F. Thompson, Photochemical characteristics of cyanine dyes. Part 1.–3,3′-diethyloxadicarbocyanine iodide and 3,3′-diethylthiadicarbocyanine iodide, J. Chem. Soc. Faraday Trans. 68, 1479–1496 (1972),
https://doi.org/10.1039/F29726801479
[26] J.T. Knudtson and E.M. Eyring, Photophysical effects of stereoisomers in thiacarbocyanine dyes, J. Phys. Chem. 78, 2355–2363 (1974),
https://doi.org/10.1021/j150671a011
[27] D. Fassler and K.H. Feller, Picosecond spectroscopy of polymethine dyes, J. Mol. Struct. 173, 377–387 (1988),
https://doi.org/10.1016/0022-2860(88)80069-3
[28] S. Abrash, S. Repinec, and R.M. Hochstrasser, The viscosity dependence and reaction coordinate for isomerization of cis‐stilbene, J. Chem. Phys. 93, 1041–1053 (1990),
https://doi.org/10.1063/1.459168
[29] F.E. Doany, R.M. Hochstrasser, B.I. Greene, and R.R. Millard, Femtosecond-resolved ground-state recovery of cis-stilbene in solution, Chem. Phys. Lett. 118, 1–5 (1985),
https://doi.org/10.1016/0009-2614(85)85254-4
[30] H. Okamoto, Picosecond infrared spectroscopy of electronically excited trans-stilbene in solution in the fingerprint region, J. Phys. Chem. A 103, 5852–5857 (1999),
https://doi.org/10.1021/jp990585n
[31] R.J. Sension, S.T. Repinec, A.Z. Szarka, and R.M. Hoch strasser, Femtosecond laser studies of the cis‐stilbene photoisomerization reactions, J. Chem. Phys. 98, 6291–6315 (1993),
https://doi.org/10.1063/1.464824
[32] M. Lee, J.N. Haseltine, A.B. Smith, and R.M. Hoch strasser, Isomerization processes of electronically excited stilbene and diphenylbutadiene in liquids. Are they one-dimensional? J. Am. Chem. Soc. 111, 5044–5051 (1989),
https://doi.org/10.1021/ja00196a004
[33] C. Burda, M.H. Abdel-Kader, S. Link, and M.A. El-Sayed, Femtosecond dynamics of a simple merocyanine dye: Does deprotonation compete with isomerization? J. Am. Chem. Soc. 122, 6720–6726 (2000),
https://doi.org/10.1021/ja993940w
[34] G. Orlandi and W. Siebrand, Model for the direct photo-isomerization of stilbene, Chem. Phys. Lett. 30, 352–354 (1975),
https://doi.org/10.1016/0009-2614(75)80005-4
[35] G. Ponterini and F. Momicchioli, Trans-cis photoisomerization mechanism of carbocyanines: experimental check of theoretical models, Chem. Phys. 151, 111–126 (1991),
https://doi.org/10.1016/0301-0104(91)80011-6
[36] S.K. Rentsch, Modeling of the fast photoisomerisation process in polymethine dyes, Chem. Phys. 69, 81–87 (1982),
https://doi.org/10.1016/0301-0104(82)88134-2
[37] F. Dietz and S.K. Rentsch, On the mechanism of photoisomerization and the structure of the photoisomers of cyanine dyes, Chem. Phys. 96, 145–151 (1985),
https://doi.org/10.1016/0301-0104(85)80200-7
[38] K.-H. Feller, R. Gadonas, and V. Krasauskas, Picosecond absorption spectroscopy of polymethine cis-trans isomerization, Laser Chem. 8, 39–47 (1988),
https://doi.org/10.1155/LC.8.39
[39] M. Arvis and J.-C. Mialocq, Flash photolysis of cyanine dyes. Pinacyanol chloride (1,1′-diethyl-2,2′-carbocyanine chloride), J. Chem. Soc. Faraday Trans. 75, 415–421 (1979),
https://doi.org/10.1039/F29797500415
[40] H. Görner, Photoprocesses in spiropyrans and their merocyanine isomers: Effects of temperature and viscosity, Chem. Phys. 222, 315–329 (1997),
https://doi.org/10.1016/S0301-0104(97)00205-X
[41] V. Voiciuk, K. Redeckas, N.A. Derevyanko, A.V. Kulinich, M. Barkauskas, M. Vengris, V. Sirutkaitis, and A.A. Ishchenko, Study of photophysical properties of a series of polymethine dyes by femtosecond laser photolysis, Dyes Pigments 109, 120–126 (2014),
https://doi.org/10.1016/j.dyepig.2014.05.012
[42] D.S. Larsen, E. Papagiannakis, I.H.M. van Stokkum, M. Vengris, J.T.M. Kennis, and R. van Grondelle, Excited state dynamics of beta-carotene explored with dispersed multi-pulse transient absorption, Chem. Phys. Lett. 381, 733–742 (2003),
https://doi.org/10.1016/j.cplett.2003.10.016
[43] J.T.M. Kennis, D.S. Larsen, N.H.M. van Stokkum, M. Vengris, J.J. van Thor, and R. van Grondelle, Uncovering the hidden ground state of green fluorescent protein, Proc. Natl. Acad. Sci. U.S.A. 101, 17988–17993 (2004),
https://doi.org/10.1073/pnas.0404262102
[44] D.S. Larsen, I.H.M. van Stokkum, M. Vengris, M.A. van der Horst, F.L. de Weerd, K.J. Hellingwerf, and R. van Grondelle, Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy, Biophys. J. 87, 1858–1872 (2004),
https://doi.org/10.1529/biophysj.104.043794
[45] D.S. Larsen, M. Vengris, I.H.M. van Stokkum, M.A. van der Horst, F.L. de Weerd, K.J. Hellingwerf, and R. van Grondelle, Photoisomerization and photoionization of the photoactive yellow protein chromophore in solution, Biophys. J. 86, 2538–2550 (2004),
https://doi.org/10.1016/S0006-3495(04)74309-X
[46] A.A. Ishchenko, The length of the polymethine chain and the spectral-luminescent properties of symmetrical cyanine dyes, Russ. Chem. Bull. 43, 1161–1174 (1994),
https://doi.org/10.1007/BF00698237
[47] A.V. Kulinich, N.A. Derevyanko, and A.A. Ishchenko, Synthesis and spectral properties of cyanine dyes – Derivatives of 10,10-dimethyl-7,8,9,10-tetrahydro-6H-pyrido[1,2-a]indolium, J. Photochem. Photobiol. A 198, 119–125 (2008),
https://doi.org/10.1016/j.jphotochem.2008.02.025
[48] K. Redeckas, V. Voiciuk, R. Steponavičiūtė, V. Martynaitis, A. Šačkus, and M. Vengris, Optically controlled molecular switching of an indolobenzoxazine-type photochromic compound, J. Phys. Chem. A 118, 5642–5651 (2014),
https://doi.org/10.1021/jp505723q
[49] M. Maroncelli, The dynamics of solvation in polar liquids, J. Mol. Liq. 57, 1–37 (1993),
https://doi.org/10.1016/0167-7322(93)80045-W