,
Alexander A. Ishchenko
Darbe tirta dviejų simetrinių polimetininių
dažiklių fotoizomerizacija trijų impulsų kinetinės sugerties
spektroskopijos metodu. Žadinimo–emisijos
stimuliavimo–zondavimo eksperimentai parodė, kad šių molekulių
žemiausių sužadintų būsenų sistemą sudaro dvi energetiškai
artimos sužadintos būsenos, tarp kurių yra dinaminė pusiausvyra.
Viena iš šių būsenų pasižymi emisija, o kita – beveik ne.
Tamsioji būsena yra molekulės fotoizomero prekursorius, ir
būtent jos metu šiose molekulėse relaksuoja didžioji dalis
sužadintų būsenų. Taip pat parodyta, kad tarp šių būsenų
egzistuoja dinaminė pusiausvyra, o tai reiškia, kad
fotoizomerizacijos vyksmo iš anksto nelemia molekulės geometrinė
konfigūracija pagrindinėje būsenoje. Molekulė „apsisprendžia“,
ar jai izomerizuotis, ar ne jau sužadintoje būsenoje.
Panaudojant globaliąją trijų impulsų kinetinės spektroskopijos
duomenų analizę, buvo nustatyti tarpinių fotoreakcijos produktų
spektrai pagrindinėje ir sužadintoje būsenose bei sukurtas
detalus fotoindukuotos dinamikos simetriniuose polimetininiuose
dažikliuose modelis.
References
/
Nuorodos
[1] A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, and G.B.
Behera, Cyanines during the 1990s: A review, Chem. Rev.
100,
1973–2012 (2000),
https://doi.org/10.1021/cr990402t
[2] V. Shirinian and A. Shimkin, in:
Heterocyclic
Polymethine Dyes, ed. L. Strekowski (Springer Berlin
Heidelberg, 2008) pp. 75–105,
https://www.springer.com/gp/book/9783540790631
[3] M.Y. Berezin and S. Achilefu, Fluorescence lifetime
measurements and biological imaging, Chem. Rev.
110,
2641–2684 (2010),
https://doi.org/10.1021/cr900343z
[4] H. Kobayashi, M. Ogawa, R. Alford, P.L. Choyke, and Y.
Urano, New strategies for fluorescent probe design in medical
diagnostic imaging, Chem. Rev.
110, 2620–2640 (2010),
https://doi.org/10.1021/cr900263j
[5] A. Hawe, M. Sutter, and W. Jiskoot, Extrinsic fluorescent
dyes as tools for protein characterization, Pharm. Res.
25,
1487–1499 (2008),
https://doi.org/10.1007/s11095-007-9516-9
[6] Z. Guo, S. Park, J. Yoon, and I. Shin, Recent progress in
the development of near-infrared fluorescent probes for
bioimaging applications, Chem. Soc. Rev.
43, 16–29
(2014),
https://doi.org/10.1039/C3CS60271K
[7] A.S. Tatikolov, Polymethine dyes as spectral-fluorescent
probes for biomacromolecules, J. Photochem. Photobiol. C
13,
55–90 (2012),
https://doi.org/10.1016/j.jphotochemrev.2011.11.001
[8] S. van de Linde, S. Aufmkolk, C. Franke, T. Holm, T. Klein,
A. Löschberger, S. Proppert, S. Wolter, and M. Sauer,
Investigating cellular structures at the nanoscale with organic
fluorophores, Chem. Biol.
20, 8–18 (2013),
https://doi.org/10.1016/j.chembiol.2012.11.004
[9] M. Ptaszek, in:
Progress in Molecular Biology and
Translational Science, ed. M.C. Morris (Academic Press,
2013) pp. 59–108,
https://doi.org/10.1016/B978-0-12-386932-6.00003-X
[10] J. Han and K. Burgess, Fluorescent indicators for
intracellular pH, Chem. Rev.
110, 2709–2728 (2010),
https://doi.org/10.1021/cr900249z
[11] M.S.T. Gonçalves, Fluorescent labeling of biomolecules with
organic probes, Chem. Rev.
109, 190–212 (2009),
https://doi.org/10.1021/cr0783840
[12] S. Yao and K.D. Belfield, Two-photon fluorescent probes for
bioimaging, Eur. J. Org. Chem.
2012, 3199–3217 (2012),
https://doi.org/10.1002/ejoc.201200281
[13] R.M. Clegg, in:
Laboratory Techniques in Biochemistry
and Molecular Biology, ed. T.W.J. Gadella (Elsevier, 2009)
pp. 1–57,
https://doi.org/10.1016/S0075-7535(08)00001-6
[14] R.M. Clegg, Fluorescence resonance energy transfer, Curr.
Opin. Biotechnol.
6, 103–110 (1995),
https://doi.org/10.1016/0958-1669(95)80016-6
[15] H. Wallrabe and A. Periasamy, Imaging protein molecules
using FRET and FLIM microscopy, Curr. Opin. Biotechnol.
16,
19–27 (2005),
https://doi.org/10.1016/j.copbio.2004.12.002
[16] J.A. Levitt, D.R. Matthews, S.M. Ameer-Beg, and K. Suhling,
Fluorescence lifetime and polarization-resolved imaging in cell
biology, Curr. Opin. Biotechnol. A
20, 28–36 (2009),
https://doi.org/10.1016/j.copbio.2009.01.004
[17] R.M. Clegg, O. Holub, and C. Gohlke, in:
Methods in
Enzymology, ed. I.P. Gerard Marriott (Academic Press,
2003) pp. 509–542,
https://doi.org/10.1016/S0076-6879(03)60126-6
[18] J.L. Bricks, A.D. Kachkovskii, Y.L. Slominskii, A.O.
Gerasov, and S.V. Popov, Molecular design of near infrared
polymethine dyes: A review, Dyes Pigments
121, 238–255
(2015),
https://doi.org/10.1016/j.dyepig.2015.05.016
[19] S. Karaca and N. Elmacı, A computational study on the
excited state properties of a cationic cyanine dye: TTBC,
Comput. Theor. Chem.
964, 160–168 (2011),
https://doi.org/10.1016/j.comptc.2010.12.016
[20] V.V. Egorov, Optical line shapes for polymethine dyes and
their aggregates: Novel theory of quantum transitions and its
correlation with experiment, J. Lumin.
131, 543–547
(2011),
https://doi.org/10.1016/j.jlumin.2010.09.001
[21] E.E. Jelley, Molecular, nematic and crystal states of
1,1′-diethyl-ψ-cyanine chloride, Nature
139, 631–631
(1937),
https://doi.org/10.1038/139631b0
[22] G. Scheibe, L. Kandler, and H. Ecker, Polymerisation und
polymere Adsorption als Ursache neuartiger Absorptionsbanden von
organischen Farbstoffen, Naturwissenschaften
25, 75–75
(1937),
https://doi.org/10.1007/BF01493278
[23] L. Zechmeister and J.H. Pinckard, On stereoisomerism in the
cyanine dye series, Experientia
9, 16–17 (1953),
https://doi.org/10.1007/BF02147696
[24] C.J. Tredwell and C.M. Keary, Picosecond time resolved
fluorescence lifetimes of the polymethine and related dyes,
Chem. Phys.
43, 307–316 (1979),
https://doi.org/10.1016/0301-0104(79)85199-X
[25] D.N. Dempster, T. Morrow, R. Rankin, and G.F. Thompson,
Photochemical characteristics of cyanine dyes. Part
1.–3,3′-diethyloxadicarbocyanine iodide and
3,3′-diethylthiadicarbocyanine iodide, J. Chem. Soc. Faraday
Trans.
68, 1479–1496 (1972),
https://doi.org/10.1039/F29726801479
[26] J.T. Knudtson and E.M. Eyring, Photophysical effects of
stereoisomers in thiacarbocyanine dyes, J. Phys. Chem.
78,
2355–2363 (1974),
https://doi.org/10.1021/j150671a011
[27] D. Fassler and K.H. Feller, Picosecond spectroscopy of
polymethine dyes, J. Mol. Struct.
173, 377–387 (1988),
https://doi.org/10.1016/0022-2860(88)80069-3
[28] S. Abrash, S. Repinec, and R.M. Hochstrasser, The viscosity
dependence and reaction coordinate for isomerization of
cis‐stilbene,
J. Chem. Phys.
93, 1041–1053 (1990),
https://doi.org/10.1063/1.459168
[29] F.E. Doany, R.M. Hochstrasser, B.I. Greene, and R.R.
Millard, Femtosecond-resolved ground-state recovery of
cis-stilbene
in solution, Chem. Phys. Lett.
118, 1–5 (1985),
https://doi.org/10.1016/0009-2614(85)85254-4
[30] H. Okamoto, Picosecond infrared spectroscopy of
electronically excited
trans-stilbene in solution in the
fingerprint region, J. Phys. Chem. A
103, 5852–5857
(1999),
https://doi.org/10.1021/jp990585n
[31] R.J. Sension, S.T. Repinec, A.Z. Szarka, and R.M. Hoch
strasser, Femtosecond laser studies of the cis‐stilbene
photoisomerization reactions, J. Chem. Phys.
98,
6291–6315 (1993),
https://doi.org/10.1063/1.464824
[32] M. Lee, J.N. Haseltine, A.B. Smith, and R.M. Hoch strasser,
Isomerization processes of electronically excited stilbene and
diphenylbutadiene in liquids. Are they one-dimensional? J. Am.
Chem. Soc.
111, 5044–5051 (1989),
https://doi.org/10.1021/ja00196a004
[33] C. Burda, M.H. Abdel-Kader, S. Link, and M.A. El-Sayed,
Femtosecond dynamics of a simple merocyanine dye: Does
deprotonation compete with isomerization? J. Am. Chem. Soc.
122,
6720–6726 (2000),
https://doi.org/10.1021/ja993940w
[34] G. Orlandi and W. Siebrand, Model for the direct
photo-isomerization of stilbene, Chem. Phys. Lett.
30,
352–354 (1975),
https://doi.org/10.1016/0009-2614(75)80005-4
[35] G. Ponterini and F. Momicchioli,
Trans-cis
photoisomerization mechanism of carbocyanines: experimental
check of theoretical models, Chem. Phys.
151, 111–126
(1991),
https://doi.org/10.1016/0301-0104(91)80011-6
[36] S.K. Rentsch, Modeling of the fast photoisomerisation
process in polymethine dyes, Chem. Phys.
69, 81–87
(1982),
https://doi.org/10.1016/0301-0104(82)88134-2
[37] F. Dietz and S.K. Rentsch, On the mechanism of
photoisomerization and the structure of the photoisomers of
cyanine dyes, Chem. Phys.
96, 145–151 (1985),
https://doi.org/10.1016/0301-0104(85)80200-7
[38] K.-H. Feller, R. Gadonas, and V. Krasauskas, Picosecond
absorption spectroscopy of polymethine cis-trans isomerization,
Laser Chem.
8, 39–47 (1988),
https://doi.org/10.1155/LC.8.39
[39] M. Arvis and J.-C. Mialocq, Flash photolysis of cyanine
dyes. Pinacyanol chloride (1,1′-diethyl-2,2′-carbocyanine
chloride), J. Chem. Soc. Faraday Trans.
75, 415–421
(1979),
https://doi.org/10.1039/F29797500415
[40] H. Görner, Photoprocesses in spiropyrans and their
merocyanine isomers: Effects of temperature and viscosity, Chem.
Phys.
222, 315–329 (1997),
https://doi.org/10.1016/S0301-0104(97)00205-X
[41] V. Voiciuk, K. Redeckas, N.A. Derevyanko, A.V. Kulinich, M.
Barkauskas, M. Vengris, V. Sirutkaitis, and A.A. Ishchenko,
Study of photophysical properties of a series of polymethine
dyes by femtosecond laser photolysis, Dyes Pigments
109,
120–126 (2014),
https://doi.org/10.1016/j.dyepig.2014.05.012
[42] D.S. Larsen, E. Papagiannakis, I.H.M. van Stokkum, M.
Vengris, J.T.M. Kennis, and R. van Grondelle, Excited state
dynamics of beta-carotene explored with dispersed multi-pulse
transient absorption, Chem. Phys. Lett.
381, 733–742
(2003),
https://doi.org/10.1016/j.cplett.2003.10.016
[43] J.T.M. Kennis, D.S. Larsen, N.H.M. van Stokkum, M. Vengris,
J.J. van Thor, and R. van Grondelle, Uncovering the hidden
ground state of green fluorescent protein, Proc. Natl. Acad.
Sci. U.S.A.
101, 17988–17993 (2004),
https://doi.org/10.1073/pnas.0404262102
[44] D.S. Larsen, I.H.M. van Stokkum, M. Vengris, M.A. van der
Horst, F.L. de Weerd, K.J. Hellingwerf, and R. van Grondelle,
Incoherent manipulation of the photoactive yellow protein
photocycle with dispersed pump-dump-probe spectroscopy, Biophys.
J.
87, 1858–1872 (2004),
https://doi.org/10.1529/biophysj.104.043794
[45] D.S. Larsen, M. Vengris, I.H.M. van Stokkum, M.A. van der
Horst, F.L. de Weerd, K.J. Hellingwerf, and R. van Grondelle,
Photoisomerization and photoionization of the photoactive yellow
protein chromophore in solution, Biophys. J.
86,
2538–2550 (2004),
https://doi.org/10.1016/S0006-3495(04)74309-X
[46] A.A. Ishchenko, The length of the polymethine chain and the
spectral-luminescent properties of symmetrical cyanine dyes,
Russ. Chem. Bull.
43, 1161–1174 (1994),
https://doi.org/10.1007/BF00698237
[47] A.V. Kulinich, N.A. Derevyanko, and A.A. Ishchenko,
Synthesis and spectral properties of cyanine dyes – Derivatives
of 10,10-dimethyl-7,8,9,10-tetrahydro-6H-pyrido[1,2-a]indolium,
J. Photochem. Photobiol. A
198, 119–125 (2008),
https://doi.org/10.1016/j.jphotochem.2008.02.025
[48] K. Redeckas, V. Voiciuk, R. Steponavičiūtė, V. Martynaitis,
A. Šačkus, and M. Vengris, Optically controlled molecular
switching of an indolobenzoxazine-type photochromic compound, J.
Phys. Chem. A
118, 5642–5651 (2014),
https://doi.org/10.1021/jp505723q
[49] M. Maroncelli, The dynamics of solvation in polar liquids,
J. Mol. Liq.
57, 1–37 (1993),
https://doi.org/10.1016/0167-7322(93)80045-W