[PDF] https://doi.org/10.3952/physics.v58i4.3880

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 58, 358–378 (2018)
 


NONLINEAR CORRELATIONS BETWEEN ν1 RAMAN BAND AND GLOBAL SCALAR PROPERTIES FOR DIFFERENT LENGTH CAROTENOIDS
Mindaugas Mačernis
 Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
 
E-mail: mindaugas.macernis@ff.vu.lt
Received 22 March 2018; revised 15 May 2018; accepted 21 June 2018

The Raman ν1 band corresponding to the polarization of various length carotenoid (Car) and polyene molecules was theoretically analysed using the density functional theory (DFT) approach. The polarization and other properties of Car and polyene monomers were estimated by using global scalar properties. The results demonstrate a linear dependence between the frequency of the so-called ν1 Raman band corresponding to the C=C stretching modes, and the global hardness (and global softness) for all molecules of different conjugation lengths. Linear correlations between all global scalar properties and the  conjugation length were for polyene structures only. From these calculations an additional relationship was also identified: upon s-cis-isomerisation the effective conjugation length and global softness increased for polyenes, while the effective conjugation length and global softness decreased for carotenoids containing β-rings at their ends. According to the electrophilicity index study, charge transfer processes (CT) should be favourable in longer carotenoid and polyene structures. A linear dependence of electronegativity was found for polyene and particular Cars subgroups. The electrophilicity index was very sensitive to special groups bonded to the polyene chain of Cars. Finally, the conjugation length of the Cars did not have a linear dependence on the electronegativity, chemical potential and electrophilicity index, but almost a linear dependence was seen on the global hardness while the polyene models had a linear dependence in all cases.
Keywords: carotenoid, polyene, resonance Raman, quantum chemistry, polarizability
PACS: 31.15.E-, 31.15.ee, 31.15.eg, 31.15.V-, 31.15.vj

RAMANO ν1 JUOSTOS IR GLOBALIŲ SKALIARINIŲ SAVYBIŲ NETIESINĖS KORELIACIJOS ĮVAIRAUS ILGIO KAROTINOIDUOSE
Mindaugas Mačernis

Vilniaus universiteto Cheminės fizikos institutas, Vilnius, Lietuva

Skirtingo ilgio karotinoidų ir polienų molekulių poliarizacinės savybės, kurios sietinos su Ramano ν1 juosta, buvo teoriškai analizuotos naudojant tankio funkcionalų metodiką. Karotinoidų ir polienų monomerų poliarizacija ir kitos savybės buvo skaičiuojamos naudojant globalias skaliarines savybes. Rezultatai rodo tiesinę priklausomybę tarp Ramano ν1 juostos atitinkamo virpesinio dažnio, kuris atitinka C=C jungties pailgėjimo modą, ir globalaus kietumo (ir globalaus minkštumo) visoms skirtingo ilgio molekulėms. Visos tiesinės priklausomybės tarp jungties ilgio ir visų globalių skaliarinių savybių buvo tik polieninėms struktūroms. Remiantis skaičiavimų rezultatais buvo nustatytas papildomas sąryšis: dėl s-cis-izomerizacijos padidėjo polienų efektyvusis jungties ilgis ir globalus minkštumas, o karotinoidų, kurie turi galuose β-žiedus, efektyvus jungties ilgis ir globalus minkštumas sumažėjo. Pagal elektrofiliškumo indeksų analizę krūvio pernašos (CT) vyksmai turėtų lengviau vykti ilgesniuose karotinoidų ir polienų dariniuose. Elektro­neigiamumo tiesinės priklausomybės buvo tarp polienų ir tarp atskirų karotinoidų pogrupių molekulių. Prie karotinoidų polieninės grandinėlės prijungtos įvairios grupės ypač turėjo reikšmės elektrofiliškumo indeksui. Karotinoidų efektyvus jungties ilgis nėra tiesiškai susijęs su elektroneigiamumu, cheminiu potencialu ir elektrofiliškumo indeksu, tačiau beveik tiesinė priklausomybė matoma su globaliu kietumu, tuo tarpu polieninių darinių modeliai tiesines priklausomybes turėjo visada.

References / Nuorodos

[1] A.A. Pascal, Z.F. Liu, K. Broess, B. van Oort, H. van Amerongen, C. Wang, P. Horton, B. Robert, W.R. Chang, and A. Ruban, Molecular basis of photoprotection and control of photosynthetic light-harvesting, Nature 436, 134–137 (2005),
https://doi.org/10.1038/nature03795
[2] A.V. Ruban, R. Berera, C. Ilioaia, I.H.M. van Stokkum, J.T.M. Kennis, A.A. Pascal, H. van Amerongen, B. Robert, P. Horton, and R. van Grondelle, Identification of a mechanism of photoprotective energy dissipation in higher plants, Nature 450, 575–578 (2007),
https://doi.org/10.1038/nature06262
[3] Carotenoids. Volume 4: Natural Functions, eds. G. Britton, S. Liaasen-Jensen, and H. Pfander (Birkäuser Verlag, Basel, Boston, 2008),
https://www.springer.com/us/book/9783764374983
[4] N.E. Holt, D. Zigmantas, L. Valkunas, X.P. Li, K.K. Niyogi, and G.R. Fleming, Carotenoid cation formation and the regulation of photosynthetic light harvesting, Science 307, 433–436 (2005),
https://doi.org/10.1126/science.1105833
[5] C. Curutchet and B. Mennucci, Quantum chemical studies of light harvesting, Chem. Rev. 117, 294–343 (2017),
https://doi.org/10.1021/acs.chemrev.5b00700
[6] T. Polivka and V. Sundstrom, Ultrafast dynamics of carotenoid excited states – from solution to natural and artificial systems, Chem. Rev. 104, 2021–2071 (2004),
https://doi.org/10.1021/cr020674n
[7] C.S. Foote, in: Free Radicals in Biology, Volume II, ed. W.A. Pryor (Academic Press, New York, 1976) pp. 85–133,
https://doi.org/10.1016/B978-0-12-566502-5.50010-X
[8] N.I. Krinsky, The evidence for the role of carotenes in preventive health, Clin. Nutr. 7, 107–114 (1988)
[9] P. Lachance, Dietary intake of carotenes and carotene gap, Clin. Nutr. 7, 118–122 (1988)
[10] D.L. Monego, M.B. da Rosa, and P.C. do Nascimento, Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review, Food Chem. 217, 37–44 (2017),
https://doi.org/10.1016/j.foodchem.2016.08.073
[11] T. Ruiz-Anchondo, N. Flores-Holguín, and D. Glossman-Mitnik, Natural carotenoids as nanomaterial precursors for molecular photovoltaics: a computational DFT study, Molecules 15, 4490–4510 (2010),
https://doi.org/10.3390/molecules15074490
[12] A.L. LeRosen and E.D. Reid, An investigation of certain solvent effect in absorption spectra, J. Chem. Phys. 20, 233–236 (1952),
https://doi.org/10.1063/1.1700384
[13] K. Hirayama, Absorption spectra and chemical structures. I. Conjugated polyenes and p-polyphenyls, J. Am. Chem. Soc. 77, 373–379 (1955),
https://doi.org/10.1021/ja01607a041
[14] P.O. Andersson, T. Gillbro, L. Ferguson, and R.J. Cogdell, Absorption spectral shifts of carotenoids related to medium polarizability, Photochem. Photobiol. 54, 353–360 (1991),
https://doi.org/10.1111/j.1751-1097.1991.tb02027.x
[15] M. Kuki, H. Nagae, R.J. Cogdell, K. Shimada, and Y. Koyama, Solvent effect on spheroidene in non-polar and polar solutions and the environment of spheroidene in the light-harvesting complexes of Rhodobacter sphaeroides 2.4.1 as revealed by the energy of the 1Ag1Bu+ absorption and the frequencies of the vibronically coupled C=C stretching Raman lines in the 1Ag and 1Bu states, Photochem. Photobiol. 59, 116–124 (1994),
https://doi.org/10.1111/j.1751-1097.1994.tb05009.x
[16] Z.G. Chen, C. Lee, T. Lenzer, and K. Oum, Solvent effects on the S0(11Ag) → S2(11Bu+) transition of β-carotene, echinenone, canthaxanthin, and astaxanthin in supercritical CO2 and CF3H, J. Phys. Chem. A 110, 11291–11297 (2006),
https://doi.org/10.1021/jp0643247
[17] I. Renge and E. Sild, Absorption shifts in carotenoids – influence of index of refraction and sub-molecular electric fields, J. Photochem. Photobiol. A 218, 156–161 (2011),
https://doi.org/10.1016/j.jphotochem.2010.12.015
[18] P. Tavan and K. Schulten, The low‐lying electronic excitations in long polyenes: A PPP‐MRD‐CI study, J. Chem. Phys. 85, 6602–6609 (1986),
https://doi.org/10.1063/1.451442
[19] T. Polivka and V. Sundstrom, Dark excited states of carotenoids: consensus and controversy, Chem. Phys. Lett. 477, 1–11 (2009),
https://doi.org/10.1016/j.cplett.2009.06.011
[20] E. Papagiannakis, J.T.M. Kennis, I.H.M. van Stok­kum, R.J. Cogdell, and R. van Grondelle, An alternative carotenoid-to-bacteriochlorophyll ener­gy transfer pathway in photosynthetic light harvesting, Proc. Natl. Acad. Sci. USA 99, 6017–6022 (2002),
https://doi.org/10.1073/pnas.092626599
[21] P. Wang, R. Nakamura, Y. Kanematsu, Y. Koyama, H. Nagae, T. Nishio, H. Hashimoto, and J.P. Zhang, Low-lying singlet states of carotenoids having 8–13 conjugated double bonds as determined by electronic absorption spectroscopy, Chem. Phys. Lett. 410, 108–114 (2005),
https://doi.org/10.1016/j.cplett.2005.05.037
[22] M. Macernis, J. Sulskus, C.D. Duffy, P.A.V. Ruban, and L. Valkunas, Electronic spectra of structurally deformed lutein, J. Phys. Chem. A 116, 9843–9853 (2012),
https://doi.org/10.1021/jp304363q
[23] C.D.P. Duffy, J. Chmeliov, M. Macernis, J. Sulskus, L. Valkunas, and A.V. Ruban, Modeling of fluorescence quenching by lutein in the plant light-harvesting complex LHCII, J. Phys. Chem. B 117, 10974–10986 (2013),
https://doi.org/10.1021/jp3110997
[24] J. Dale, Empirical relationships of the minor bands in the absorption spectra of polyenes, Acta Chem. Scand. 8, 1235–1256 (1954),
https://doi.org/10.3891/acta.chem.scand.08-1235
[25] R. Hemley and B. Kohler, Electronic structure of polyenes related to the visual chromophore. A simple model for the observed band shapes, Biophys. J. 20, 377–382 (1977),
https://doi.org/10.1016/S0006-3495(77)85556-2
[26] R.L. Christensen, E.A. Barney, R.D. Broene, M.G.I. Galinato, and H.A. Frank, Linear polyenes: models for the spectroscopy and photophysics of carotenoids, Arch. Biochem. Biophys. 430, 30–36 (2004),
https://doi.org/10.1016/j.abb.2004.02.026
[27] G. Araki and T. Murai, Molecular structure and absorption spectra of carotenoids, Prog. Theor. Phys. 8, 639–654 (1952),
https://doi.org/10.1143/PTP.8.639
[28] H. Suzuki and S. Mizuhuashi, π-electronic structure and absorption spectra of carotenoids, J. Phys. Soc. Jpn. 19, 724–738 (1964),
https://doi.org/10.1143/JPSJ.19.724
[29] M. Macernis, J. Sulskus, S. Malickaja, B. Robert, and L. Valkunas, Resonance Raman spectra and electronic transitions in carotenoids: A density functional theory study, J. Phys. Chem. A 118, 1817–1825 (2014),
https://doi.org/10.1021/jp406449c
[30] J.C. Dobrowolski, in: Carotenoids: Nutrition, Analysis and Technology, 1st ed., eds. A. Kaczor and M. Barańska (Wiley, Chichester, 2016) pp. 75–102,
https://doi.org/10.1002/9781118622223.ch6
[31] M. Macernis, D. Galzerano, J. Sulskus, E. Kish, Y.-H. Kim, S. Koo, L. Valkunas, and B. Robert, Resonance Raman spectra of carotenoid molecules: influence of methyl substitutions, J. Phys. Chem. A 119, 56–66 (2015),
https://doi.org/10.1021/jp510426m
[32] M.M. Mendes-Pinto, E. Sansiaume, H. Hashimoto, A.A. Pascal, A. Gall, and B. Robert, Electronic absorption and ground state structure of carotenoid molecules, J. Phys. Chem. B 117, 10974–10986 (2013),
https://doi.org/10.1021/jp309908r
[33] B. Robert, in: The Electronic Structure, Stereo chemistry and Resonance Raman Spectroscopy of Carotenoids, eds. H. Frank, A. Young, G. Britton, and R. Cogdell (Kluwer Academic Publishers, Dordrecht, 1999) pp. 189–201,
https://doi.org//10.1007/0-306-48209-6_10
[34] Y. Koyama and R. Fujii, in: The Photochemistry of Carotenoids, eds. H. Frank, A. Young, G. Britton, and R. Cogdell (Kluwer Academic Publishers, Dordrecht, 1999) p. 161–188,
https://www.springer.com/gp/book/9780792359425
[35] M.M. Mendes-Pinto, E. Sansiaume, H. Hashimoto, A.A. Pascal, A. Gall, and B. Robert, Electronic absorption and ground state structure of carotenoid molecules, J. Phys. Chem. B 117, 11015–11021 (2013),
https://doi.org/10.1021/jp309908r
[36] S. Saito and M. Tasumi, Normal-coordinate analysis of retinal isomers and assignments of Raman and infrared bands, J. Raman Spectrosc. 14, 236–245 (1983),
https://doi.org/10.1002/jrs.1250140405
[37] A. Angerhofer, F. Bornhauser, A. Gall, and R.J. Cogdell, Optical and optically detected magnetic-resonance investigation on purple photosynthetic bacterial antenna complexes, Chem. Phys. 194, 259–274 (1995),
https://doi.org/10.1016/0301-0104(95)00022-G
[38] M.J. Llansola-Portoles, R. Sobotka, E. Kish, M.K. Shukla, A.A. Pascal, T. Polívka, and B. Robert, Twisting a β-carotene, an adaptive trick from nature for dissipating energy during photoprotection, J. Biol. Chem. 292, 1396–1403 (2017),
https://doi.org/10.1074/jbc.M116.753723
[39] K. Jomova and M. Valko, Health protective effects of carotenoids and their interactions with other biological antioxidants, Eur. J. Med. Chem. 70, 102–110 (2013),
https://doi.org/10.1016/j.ejmech.2013.09.054
[40] T. Toury, J. Zyss, V. Chernyak, and S. Mukamel, Collective electronic oscillators for second-order polarizabilities of push–pull carotenoids, J. Phys. Chem. A 105, 5692–5703 (2001),
https://doi.org/10.1021/jp004471j
[41] H. Hashimoto, T. Nakashima, K. Hattori, T. Yamada, T. Mizoguchi, Y. Koyama, and T. Kobayashi, Structures and non-linear optical properties of polar carotenoid analogues, Pure Appl. Chem. 71, 2225–2236 (1999),
https://doi.org/10.1351/pac199971122225
[42] V.M. Geskin, M.Yu. Balakina, J. Li, S.R. Marder, and J.L. Brédas, Theoretical investigation of the origin of the large non-linear optical response in acceptor-substituted carotenoids, Syn. Met. 116, 263–267 (2001),
https://doi.org/10.1016/S0379-6779(00)00464-1
[43] S. Krawczyk, B. Jazurek, R. Luchowski, and D. Wiacek, Electroabsorption spectra of carotenoid isomers: Conformational modulation of polarizability vs. induced dipole moments, Chem. Phys. 326, 465–470 (2006),
https://doi.org/10.1016/j.chemphys.2006.03.006
[44] M.Y. Balakina, J. Li, V.M. Geskin, S.R. Marder, and J.L. Bredas, Nonlinear optical response in acceptor-substituted carotenoids: A theoretical study, J. Chem. Phys. 113, 9598–9609 (2000),
https://doi.org/10.1063/1.1321297
[45] W.L. Liu, D.M. Wang, Z.R. Zheng, A.H. Li, and W.H. Su, Solvent effects on the S0S2 absorption spectra of β-carotene, Chinese Phys. B 19, 013102 (2010),
https://doi.org/10.1088/1674-1056/19/1/013102
[46] Z.F. Liu, H.C. Yan, K.B. Wang, T.Y. Kuang, J.P. Zhang, L.L. Gui, X.M. An, and W.R. Chang, Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution, Nature 428, 287–292 (2004),
https://doi.org/10.1038/nature02373
[47] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian 09 (Gaussian, Inc., Wallingford, CT, USA, 2009),
http://gaussian.com/
[48] J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118, 8207 (2003),
https://doi.org/10.1063/1.1564060
[49] C.D.P. Duffy, M.P. Johnson, M. Macernis, L. Valkunas, W. Barford, and A.V. Ruban, A theoretical investigation of the photophysical consequences of major plant light-harvesting complex aggregation within the photosynthetic membrane, J. Phys. Chem. B 114, 15244–15253 (2010),
https://doi.org/10.1021/jp106234e
[50] T. Yanai, D.P. Tew, and N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett. 393, 51–57 (2004),
https://doi.org/10.1016/j.cplett.2004.06.011
[51] A. Dreuw, P.H.P. Harbach, J.M. Mewes, and M. Wormit, Quantum chemical excited state calculations on pigment–protein complexes require thorough geometry re-optimization of experimental crystal structures, Theor. Chem. Acc. 125, 419–426 (2010),
https://doi.org/10.1007/s00214-009-0680-3
[52] T. Kupka, A. Buczek, M.A. Broda, M. Stachów, and P. Tarnowski, DFT studies on the structural and vibrational properties of polyenes, J. Mol. Model. 22, 101 (2016),
https://doi.org/10.1007/s00894-016-2969-1
[53] S.R. Pilli, T. Banerjee, and K. Mohanty, HOMO–LUMO energy interactions between endocrine disrupting chemicals and ionic liquids using the density functional theory: Evaluation and comparison, J. Mol. Liq. 207, 112–124 (2015),
https://doi.org/10.1016/j.molliq.2015.03.019