Received 22 March 2018; revised 15 May 2018; accepted 21 June 2018
Skirtingo ilgio karotinoidų ir polienų
molekulių poliarizacinės savybės, kurios sietinos su Ramano ν1
juosta, buvo teoriškai analizuotos naudojant tankio funkcionalų
metodiką. Karotinoidų ir polienų monomerų poliarizacija ir kitos
savybės buvo skaičiuojamos naudojant globalias skaliarines
savybes. Rezultatai rodo tiesinę priklausomybę tarp Ramano ν1
juostos atitinkamo virpesinio dažnio, kuris atitinka C=C
jungties pailgėjimo modą, ir globalaus kietumo (ir globalaus
minkštumo) visoms skirtingo ilgio molekulėms. Visos tiesinės
priklausomybės tarp jungties ilgio ir visų globalių skaliarinių
savybių buvo tik polieninėms struktūroms. Remiantis skaičiavimų
rezultatais buvo nustatytas papildomas sąryšis: dėl
s-cis-izomerizacijos padidėjo polienų efektyvusis jungties ilgis
ir globalus minkštumas, o karotinoidų, kurie turi galuose β-žiedus,
efektyvus jungties ilgis ir globalus minkštumas sumažėjo. Pagal
elektrofiliškumo indeksų analizę krūvio pernašos (CT) vyksmai
turėtų lengviau vykti ilgesniuose karotinoidų ir polienų
dariniuose. Elektroneigiamumo tiesinės priklausomybės buvo tarp
polienų ir tarp atskirų karotinoidų pogrupių molekulių. Prie
karotinoidų polieninės grandinėlės prijungtos įvairios grupės
ypač turėjo reikšmės elektrofiliškumo indeksui. Karotinoidų
efektyvus jungties ilgis nėra tiesiškai susijęs su
elektroneigiamumu, cheminiu potencialu ir elektrofiliškumo
indeksu, tačiau beveik tiesinė priklausomybė matoma su globaliu
kietumu, tuo tarpu polieninių darinių modeliai tiesines
priklausomybes turėjo visada.
References
/
Nuorodos
[1] A.A. Pascal, Z.F. Liu, K. Broess, B. van Oort, H. van
Amerongen, C. Wang, P. Horton, B. Robert, W.R. Chang, and A.
Ruban, Molecular basis of photoprotection and control of
photosynthetic light-harvesting, Nature
436, 134–137
(2005),
https://doi.org/10.1038/nature03795
[2] A.V. Ruban, R. Berera, C. Ilioaia, I.H.M. van Stokkum,
J.T.M. Kennis, A.A. Pascal, H. van Amerongen, B. Robert, P.
Horton, and R. van Grondelle, Identification of a mechanism of
photoprotective energy dissipation in higher plants, Nature
450,
575–578 (2007),
https://doi.org/10.1038/nature06262
[3]
Carotenoids. Volume 4: Natural Functions, eds. G.
Britton, S. Liaasen-Jensen, and H. Pfander (Birkäuser Verlag,
Basel, Boston, 2008),
https://www.springer.com/us/book/9783764374983
[4] N.E. Holt, D. Zigmantas, L. Valkunas, X.P. Li, K.K. Niyogi,
and G.R. Fleming, Carotenoid cation formation and the regulation
of photosynthetic light harvesting, Science
307, 433–436
(2005),
https://doi.org/10.1126/science.1105833
[5] C. Curutchet and B. Mennucci, Quantum chemical studies of
light harvesting, Chem. Rev.
117, 294–343 (2017),
https://doi.org/10.1021/acs.chemrev.5b00700
[6] T. Polivka and V. Sundstrom, Ultrafast dynamics of
carotenoid excited states – from solution to natural and
artificial systems, Chem. Rev.
104, 2021–2071 (2004),
https://doi.org/10.1021/cr020674n
[7] C.S. Foote, in:
Free Radicals in Biology, Volume II,
ed. W.A. Pryor (Academic Press, New York, 1976) pp. 85–133,
https://doi.org/10.1016/B978-0-12-566502-5.50010-X
[8] N.I. Krinsky, The evidence for the role of carotenes in
preventive health, Clin. Nutr.
7, 107–114 (1988)
[9] P. Lachance, Dietary intake of carotenes and carotene gap,
Clin. Nutr.
7, 118–122 (1988)
[10] D.L. Monego, M.B. da Rosa, and P.C. do Nascimento,
Applications of computational chemistry to the study of the
antiradical activity of carotenoids: A review, Food Chem.
217,
37–44 (2017),
https://doi.org/10.1016/j.foodchem.2016.08.073
[11] T. Ruiz-Anchondo, N. Flores-Holguín, and D.
Glossman-Mitnik, Natural carotenoids as nanomaterial precursors
for molecular photovoltaics: a computational DFT study,
Molecules
15, 4490–4510 (2010),
https://doi.org/10.3390/molecules15074490
[12] A.L. LeRosen and E.D. Reid, An investigation of certain
solvent effect in absorption spectra, J. Chem. Phys.
20,
233–236 (1952),
https://doi.org/10.1063/1.1700384
[13] K. Hirayama, Absorption spectra and chemical structures. I.
Conjugated polyenes and p-polyphenyls, J. Am. Chem. Soc.
77,
373–379 (1955),
https://doi.org/10.1021/ja01607a041
[14] P.O. Andersson, T. Gillbro, L. Ferguson, and R.J. Cogdell,
Absorption spectral shifts of carotenoids related to medium
polarizability, Photochem. Photobiol.
54, 353–360
(1991),
https://doi.org/10.1111/j.1751-1097.1991.tb02027.x
[15] M. Kuki, H. Nagae, R.J. Cogdell, K. Shimada, and Y. Koyama,
Solvent effect on spheroidene in non-polar and polar solutions
and the environment of spheroidene in the light-harvesting
complexes of
Rhodobacter sphaeroides 2.4.1 as revealed
by the energy of the
1A
g− →
1B
u+
absorption and the frequencies of the vibronically coupled C=C
stretching Raman lines in the
1A
g−
and
1B
u− states, Photochem.
Photobiol.
59, 116–124 (1994),
https://doi.org/10.1111/j.1751-1097.1994.tb05009.x
[16] Z.G. Chen, C. Lee, T. Lenzer, and K. Oum, Solvent effects
on the S
0(1
1A
g−) → S
2(1
1B
u+)
transition of
β-carotene, echinenone, canthaxanthin, and
astaxanthin in supercritical CO
2 and CF
3H,
J. Phys. Chem. A
110, 11291–11297 (2006),
https://doi.org/10.1021/jp0643247
[17] I. Renge and E. Sild, Absorption shifts in carotenoids –
influence of index of refraction and sub-molecular electric
fields, J. Photochem. Photobiol. A
218, 156–161 (2011),
https://doi.org/10.1016/j.jphotochem.2010.12.015
[18] P. Tavan and K. Schulten, The low‐lying electronic
excitations in long polyenes: A PPP‐MRD‐CI study, J. Chem. Phys.
85, 6602–6609 (1986),
https://doi.org/10.1063/1.451442
[19] T. Polivka and V. Sundstrom, Dark excited states of
carotenoids: consensus and controversy, Chem. Phys. Lett.
477,
1–11 (2009),
https://doi.org/10.1016/j.cplett.2009.06.011
[20] E. Papagiannakis, J.T.M. Kennis, I.H.M. van Stokkum, R.J.
Cogdell, and R. van Grondelle, An alternative
carotenoid-to-bacteriochlorophyll energy transfer pathway in
photosynthetic light harvesting, Proc. Natl. Acad. Sci. USA
99,
6017–6022 (2002),
https://doi.org/10.1073/pnas.092626599
[21] P. Wang, R. Nakamura, Y. Kanematsu, Y. Koyama, H. Nagae, T.
Nishio, H. Hashimoto, and J.P. Zhang, Low-lying singlet states
of carotenoids having 8–13 conjugated double bonds as determined
by electronic absorption spectroscopy, Chem. Phys. Lett.
410,
108–114 (2005),
https://doi.org/10.1016/j.cplett.2005.05.037
[22] M. Macernis, J. Sulskus, C.D. Duffy, P.A.V. Ruban, and L.
Valkunas, Electronic spectra of structurally deformed lutein, J.
Phys. Chem. A
116, 9843–9853 (2012),
https://doi.org/10.1021/jp304363q
[23] C.D.P. Duffy, J. Chmeliov, M. Macernis, J. Sulskus, L.
Valkunas, and A.V. Ruban, Modeling of fluorescence quenching by
lutein in the plant light-harvesting complex LHCII, J. Phys.
Chem. B
117, 10974–10986 (2013),
https://doi.org/10.1021/jp3110997
[24] J. Dale, Empirical relationships of the minor bands in the
absorption spectra of polyenes, Acta Chem. Scand.
8,
1235–1256 (1954),
https://doi.org/10.3891/acta.chem.scand.08-1235
[25] R. Hemley and B. Kohler, Electronic structure of polyenes
related to the visual chromophore. A simple model for the
observed band shapes, Biophys. J.
20, 377–382 (1977),
https://doi.org/10.1016/S0006-3495(77)85556-2
[26] R.L. Christensen, E.A. Barney, R.D. Broene, M.G.I.
Galinato, and H.A. Frank, Linear polyenes: models for the
spectroscopy and photophysics of carotenoids, Arch. Biochem.
Biophys.
430, 30–36 (2004),
https://doi.org/10.1016/j.abb.2004.02.026
[27] G. Araki and T. Murai, Molecular structure and absorption
spectra of carotenoids, Prog. Theor. Phys.
8, 639–654
(1952),
https://doi.org/10.1143/PTP.8.639
[28] H. Suzuki and S. Mizuhuashi,
π-electronic structure
and absorption spectra of carotenoids, J. Phys. Soc. Jpn.
19,
724–738 (1964),
https://doi.org/10.1143/JPSJ.19.724
[29] M. Macernis, J. Sulskus, S. Malickaja, B. Robert, and L.
Valkunas, Resonance Raman spectra and electronic transitions in
carotenoids: A density functional theory study, J. Phys. Chem. A
118, 1817–1825 (2014),
https://doi.org/10.1021/jp406449c
[30] J.C. Dobrowolski, in:
Carotenoids: Nutrition, Analysis
and Technology, 1st ed., eds. A. Kaczor and M. Barańska
(Wiley, Chichester, 2016) pp. 75–102,
https://doi.org/10.1002/9781118622223.ch6
[31] M. Macernis, D. Galzerano, J. Sulskus, E. Kish, Y.-H. Kim,
S. Koo, L. Valkunas, and B. Robert, Resonance Raman spectra of
carotenoid molecules: influence of methyl substitutions, J.
Phys. Chem. A
119, 56–66 (2015),
https://doi.org/10.1021/jp510426m
[32] M.M. Mendes-Pinto, E. Sansiaume, H. Hashimoto, A.A. Pascal,
A. Gall, and B. Robert, Electronic absorption and ground state
structure of carotenoid molecules, J. Phys. Chem. B
117,
10974–10986 (2013),
https://doi.org/10.1021/jp309908r
[33] B. Robert, in:
The Electronic Structure, Stereo
chemistry and Resonance Raman Spectroscopy of Carotenoids,
eds. H. Frank, A. Young, G. Britton, and R. Cogdell (Kluwer
Academic Publishers, Dordrecht, 1999) pp. 189–201,
https://doi.org//10.1007/0-306-48209-6_10
[34] Y. Koyama and R. Fujii, in:
The Photochemistry of
Carotenoids, eds. H. Frank, A. Young, G. Britton, and R.
Cogdell (Kluwer Academic Publishers, Dordrecht, 1999) p.
161–188,
https://www.springer.com/gp/book/9780792359425
[35] M.M. Mendes-Pinto, E. Sansiaume, H. Hashimoto, A.A. Pascal,
A. Gall, and B. Robert, Electronic absorption and ground state
structure of carotenoid molecules, J. Phys. Chem. B
117,
11015–11021 (2013),
https://doi.org/10.1021/jp309908r
[36] S. Saito and M. Tasumi, Normal-coordinate analysis of
retinal isomers and assignments of Raman and infrared bands, J.
Raman Spectrosc.
14, 236–245 (1983),
https://doi.org/10.1002/jrs.1250140405
[37] A. Angerhofer, F. Bornhauser, A. Gall, and R.J. Cogdell,
Optical and optically detected magnetic-resonance investigation
on purple photosynthetic bacterial antenna complexes, Chem.
Phys.
194, 259–274 (1995),
https://doi.org/10.1016/0301-0104(95)00022-G
[38] M.J. Llansola-Portoles, R. Sobotka, E. Kish, M.K. Shukla,
A.A. Pascal, T. Polívka, and B. Robert, Twisting a β-carotene,
an adaptive trick from nature for dissipating energy during
photoprotection, J. Biol. Chem. 292, 1396–1403 (2017),
https://doi.org/10.1074/jbc.M116.753723
[39] K. Jomova and M. Valko, Health protective effects of
carotenoids and their interactions with other biological
antioxidants, Eur. J. Med. Chem.
70, 102–110 (2013),
https://doi.org/10.1016/j.ejmech.2013.09.054
[40] T. Toury, J. Zyss, V. Chernyak, and S. Mukamel, Collective
electronic oscillators for second-order polarizabilities of
push–pull carotenoids, J. Phys. Chem. A
105, 5692–5703
(2001),
https://doi.org/10.1021/jp004471j
[41] H. Hashimoto, T. Nakashima, K. Hattori, T. Yamada, T.
Mizoguchi, Y. Koyama, and T. Kobayashi, Structures and
non-linear optical properties of polar carotenoid analogues,
Pure Appl. Chem.
71, 2225–2236 (1999),
https://doi.org/10.1351/pac199971122225
[42] V.M. Geskin, M.Yu. Balakina, J. Li, S.R. Marder, and J.L.
Brédas, Theoretical investigation of the origin of the large
non-linear optical response in acceptor-substituted carotenoids,
Syn. Met.
116, 263–267 (2001),
https://doi.org/10.1016/S0379-6779(00)00464-1
[43] S. Krawczyk, B. Jazurek, R. Luchowski, and D. Wiacek,
Electroabsorption spectra of carotenoid isomers: Conformational
modulation of polarizability vs. induced dipole moments, Chem.
Phys.
326, 465–470 (2006),
https://doi.org/10.1016/j.chemphys.2006.03.006
[44] M.Y. Balakina, J. Li, V.M. Geskin, S.R. Marder, and J.L.
Bredas, Nonlinear optical response in acceptor-substituted
carotenoids: A theoretical study, J. Chem. Phys.
113,
9598–9609 (2000),
https://doi.org/10.1063/1.1321297
[45] W.L. Liu, D.M. Wang, Z.R. Zheng, A.H. Li, and W.H. Su,
Solvent effects on the
S0 →
S2
absorption spectra of β-carotene, Chinese Phys. B
19,
013102 (2010),
https://doi.org/10.1088/1674-1056/19/1/013102
[46] Z.F. Liu, H.C. Yan, K.B. Wang, T.Y. Kuang, J.P. Zhang, L.L.
Gui, X.M. An, and W.R. Chang, Crystal structure of spinach major
light-harvesting complex at 2.72 angstrom resolution, Nature
428,
287–292 (2004),
https://doi.org/10.1038/nature02373
[47] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G.A. Petersson, et al.,
Gaussian 09 (Gaussian, Inc.,
Wallingford, CT, USA, 2009),
http://gaussian.com/
[48] J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid
functionals based on a screened Coulomb potential, J. Chem.
Phys.
118, 8207 (2003),
https://doi.org/10.1063/1.1564060
[49] C.D.P. Duffy, M.P. Johnson, M. Macernis, L. Valkunas, W.
Barford, and A.V. Ruban, A theoretical investigation of the
photophysical consequences of major plant light-harvesting
complex aggregation within the photosynthetic membrane, J. Phys.
Chem. B
114, 15244–15253 (2010),
https://doi.org/10.1021/jp106234e
[50] T. Yanai, D.P. Tew, and N.C. Handy, A new hybrid
exchange–correlation functional using the Coulomb-attenuating
method (CAM-B3LYP), Chem. Phys. Lett.
393, 51–57 (2004),
https://doi.org/10.1016/j.cplett.2004.06.011
[51] A. Dreuw, P.H.P. Harbach, J.M. Mewes, and M. Wormit,
Quantum chemical excited state calculations on pigment–protein
complexes require thorough geometry re-optimization of
experimental crystal structures, Theor. Chem. Acc.
125,
419–426 (2010),
https://doi.org/10.1007/s00214-009-0680-3
[52] T. Kupka, A. Buczek, M.A. Broda, M. Stachów, and P.
Tarnowski, DFT studies on the structural and vibrational
properties of polyenes, J. Mol. Model.
22, 101 (2016),
https://doi.org/10.1007/s00894-016-2969-1
[53] S.R. Pilli, T. Banerjee, and K. Mohanty, HOMO–LUMO energy
interactions between endocrine disrupting chemicals and ionic
liquids using the density functional theory: Evaluation and
comparison, J. Mol. Liq.
207, 112–124 (2015),
https://doi.org/10.1016/j.molliq.2015.03.019