Neseniai buvo pasiūlytas paprastas
konceptualus fliuktuojančiosios antenos modelis (FAM),
apibūdinantis sužadinimo difuziją ir pagavimą tolydžioje terpėje
bei atsižvelgiantis į kintančius sužadinimo pernašos kelius
trupmenine erdvės dimensija. Nuo FAM paskelbimo jis buvo
sėkmingai pritaikytas modeliuojant neeksponentines sužadinimo
gesimo kinetikas daugelyje augalų fotosintetinių sistemų
neįvedant radikalų poros būsenų reakcijų centruose. Apžvelgiami
gauti sistemų parametrai ir praplečiamos FAM taikymo sritys
įvairioms pirmosios fotosistemos (PSI) dalelėms, kaip,
pavyzdžiui, PSI kompleksui su pagrindiniu augalų šviesorankos
kompleksu LHCII.
Parodoma, kad sužadinimo difuzija PSI branduolio komplekse yra
beveik trimatė. PSI branduolio ir LHCI superkompleksui būdinga
daug mažesnė dimensija, atspindinti minimalų energijos pernašos
jungčių skaičių tarp LHCI ir PSI branduolio. FAM įvertinimai
rodo, kad tiek PSI, tiek PSII antenos natūraliomis sąlygomis yra
daug didesnės nei žinomose sistemose, ištrauktose iš tilakoidų
membranų: PSII antenoje yra maždaug 6 LHCII trimerai, o PSI yra
agreguota su bent vienu LHCII trimeru. Rezultatai rodo, kad
remiantis kinetinės fluorescencijos spektroskopijos duomenimis,
FAM gali būti labai naudingas siekiant stebėti fotosintetinių
sistemų kaitą tiek trumpalaikiame, tiek ir ilgalaikiame
prisitaikyme prie kintančios apšvitos.
References
/
Nuorodos
[1] R.E. Blankenship,
Molecular Mechanisms of Photosynthesis,
2nd ed. (Wiley Blackwell, Chichester, 2014),
https://doi.org/
10.1002/9780470758472
[2] E. Belgio, E. Kapitonova, J. Chmeliov, C.D.P. Duffy, P.
Ungerer, L. Valkunas, and A.V. Ruban, Economic photoprotection
in photosystem II that retains a complete light-harvesting
system with slow energy traps, Nat. Commun.
5, 4433
(2014),
https://doi.org/10.1038/ncomms5433
[3] S. Farooq, J. Chmeliov, E. Wientjes, R. Koehorst, A. Bader,
L. Valkunas, G. Trinkunas, and H. van Amerongen, Dynamic
feedback of the photosystem II reaction centre on
photoprotection in plants, Nat. Plants
4(4), 225–231
(2018),
https://doi.org/10.1038/s41477-018-0127-8
[4] J. Kromdijk, K. Głowacka, L. Leonelli, S.T. Gabilly, M.
Iwai, K.K. Niyogi, and S.P. Long, Improving photosynthesis and
crop productivity by accelerating recovery from photoprotection,
Science
354, 857–861 (2016),
https://doi.org/10.1126/science.aai8878
[5] C.D.P. Duffy, L. Valkunas, and A.V. Ruban, Light-harvesting
processes in the dynamic photosynthetic antenna, Phys. Chem.
Chem. Phys.
15(43), 18752–18770 (2013),
https://doi.org/10.1039/c3cp51878g
[6] J. Chmeliov, G. Trinkunas, H. van Amerongen, and L.
Valkunas, Light harvesting in a fluctuating antenna, J. Am.
Chem. Soc.
136(25), 8963–8972 (2014),
https://doi.org/10.1021/ja5027858
[7] K. Broess, G. Trinkunas, C.D. van der Weij-de Wit, J.P.
Dekker, A. van Hoek, and H. van Amerongen, Excitation energy
transfer and charge separation in photosystem II membranes
revisited, Biophys. J.
91(10), 3776–3786 (2006),
https://doi.org/10.1529/biophysj.106.085068
[8] L. Valkunas, G. Trinkunas, J. Chmeliov, and A.V. Ruban,
Modeling of exciton quenching in photosystem II, Phys. Chem.
Chem. Phys.
11(35), 7576–7584 (2009),
https://doi.org/10.1039/b901848d
[9] S. Caffarri, K. Broess, R. Croce, and H. van Amerongen,
Excitation energy transfer and trapping in higher plant
photosystem II complexes with different antenna sizes, Biophys.
J.
100(9), 2094–2103 (2011),
https://doi.org/10.1016/j.bpj.2011.03.049
[10] D.I.G. Bennett, K. Amarnath, and G.R. Fleming, A
structure-based model of energy transfer reveals the principles
of light harvesting in photosystem II supercomplexes, J. Am.
Chem. Soc.
135(24), 9164–9173 (2013),
https://doi.org/10.1021/ja403685a
[11] V.I. Novoderezhkin, M.A. Palacios, H. van Amerongen, and R.
van Grondelle, Excitation dynamics in the LHCII complex of
higher plants: Modeling based on the 2.72 Å crystal structure,
J. Phys. Chem. B
109(20), 10493–10504 (2005),
https://doi.org/10.1021/jp044082f
[12] F. Müh, T. Renger, and A. Zouni, Crystal structure of
cyanobacterial photosystem II at 3.0 Å resolution: A closer look
at the antenna system and the small membrane-intrinsic subunits,
Plant Physiol. Biochem.
46(3), 238–264 (2008),
https://doi.org/10.1016/j.plaphy.2008.01.003
[13] C.D.P. Duffy, L. Valkunas, and A.V. Ruban, Quantum
mechanical calculations of xanthophyll–chlorophyll electronic
coupling in the light-harvesting antenna of photosystem I of
higher plants, J. Phys. Chem. B
117(25), 7605–7614
(2013),
https://doi.org/10.1021/jp4025848
[14] J. Chmeliov, W.P. Bricker, C. Lo, E. Jouin, L. Valkunas,
A.V. Ruban, and C.D.P. Duffy, An 'all pigment' model of
excitation quenching in LHCII, Phys. Chem. Chem. Phys.
17(24),
15857–15867 (2015),
https://doi.org/10.1039/C5CP01905B
[15] V. Barzda, V. Gulbinas, R. Kananavicius, V. Cervinskas, H.
van Amerongen, R. van Grondelle, and L. Valkunas,
Singlet–singlet annihilation kinetics in aggregates and trimers
of LHCII, Biophys. J.
80(5), 2409–2421 (2001),
https://doi.org/10.1016/S0006-3495(01)76210-8
[16] S. Farooq, J. Chmeliov, G. Trinkunas, L. Valkunas, and H.
van Amerongen, Is there excitation energy transfer between
different layers of stacked photosystem-II-containing thylakoid
membranes? J. Phys. Chem. Lett.
7(7), 1406–1410 (2016),
https://doi.org/10.1021/acs.jpclett.6b00474
[17] G. Garab, Self-assembly and structural–functional
flexibility of oxygenic photosynthetic machineries: Personal
perspectives, Photosynth. Res.
127, 131–150 (2016),
https://doi.org/10.1007/s11120-015-0192-z
[18] N.E. Holt, D. Zigmantas, L. Valkunas, X.P. Li, K.K. Niyogi,
and G.R. Fleming, Carotenoid cation formation and the regulation
of photosynthetic light harvesting, Science
307(5708),
433–436 (2005),
https://doi.org/10.1126/science.1105833
[19] A.A. Pascal, Z.F. Liu, K. Broess, B. van Oort, H. van
Amerongen, C. Wang, P. Horton, B. Robert, W.R. Chang, and A.
Ruban, Molecular basis of photoprotection and control of
photosynthetic light-harvesting, Nature
436(7047),
134–137 (2005),
https://doi.org/10.1038/nature03795
[20] A.V. Ruban, R. Berera, C. Ilioaia, I.H.M. van Stokkum,
J.T.M. Kennis, A.A. Pascal, H. van Amerongen, B. Robert, P.
Horton, and R. van Grondelle, Identification of a mechanism of
photoprotective energy dissipation in higher plants, Nature
450(7169),
575–578 (2007),
https://doi.org/10.1038/nature06262
[21] T.K. Ahn, T.J. Avenson, M. Ballottari, Y.C. Cheng, K.K.
Niyogi, R. Bassi, and G.R. Fleming, Architecture of a
charge-transfer state regulating light harvesting in a plant
antenna protein, Science
320(5877), 794–797 (2008),
https://doi.org/10.1126/science.1154800
[22] H. Staleva, J. Komenda, M.K. Shukla, V. Šlouf, R. Kaňa, T.
Polívka, and R. Sobotka, Mechanism of photoprotection in the
cyanobacterial ancestor of plant antenna proteins, Nat. Chem.
Biol.
11(4), 287–291 (2015),
https://doi.org/10.1038/nchembio.1755
[23] J. Chmeliov, A. Gelzinis, E. Songaila, R. Augulis, C.D.P.
Duffy, A.V. Ruban, and L. Valkunas, The nature of
self-regulation in photosynthetic light-harvesting antenna, Nat.
Plants
2, 16045 (2016),
https://doi.org/10.1038/nplants.2016.45
[24] J. Chmeliov, G. Trinkunas, H. van Amerongen, and L.
Valkunas, Excitation migration in fluctuating light-harvesting
antenna systems, Photosynth. Res.
127(1), 49–60 (2016),
https://doi.org/10.1007/s11120-015-0083-3
[25] M.G. Müller, P. Lambrev, M. Reus, E. Wientjes, R. Croce,
and A.R. Holzwarth, Singlet energy dissipation in the
photosystem II light-harvesting complex does not involve energy
transfer to carotenoids, ChemPhysChem
11(6), 1289–1296
(2010),
https://doi.org/10.1002/cphc.200900852
[26] M. Mamedov, G.V. Nadtochenko, and A. Semenov, Primary
electron transfer processes in photosynthetic reaction centers
from oxygenic organisms, Photosynth. Res.
125, 51–63
(2015),
https://doi.org/10.1007/s11120-015-0088-y
[27] D.A. Cherepanov, G.E. Milanovsky, O.A. Gopta, R.
Balasubramanian, D.A. Bryant, A.Y. Semenov, and J.H. Golbeck,
Electron–phonon coupling in cyanobacterial photosystem I, J.
Phys. Chem. B
122, 7943–7955 (2018),
https://doi.org/10.1021/acs.jpcb.8b03906
[28] R. Croce and H. van Amerongen, Light-harvest ing in
photosystem I, Photosynth. Res.
116(2–3), 153–166
(2013),
https://doi.org/10.1007/s11120-013-9838-x
[29] I.H.M. van Stokkum, D.S. Larsen, and R. van Grondelle,
Global and target analysis of time-resolved spectra, Biochim.
Biophys. Acta
1657, 82–104 (2004),
https://doi.org/10.1016/j.bbabio.2004.04.011
[30] M. Brecht, V. Radics, J.B. Nieder, and R. Bittl, Protein
dynamics-induced variation of excitation energy transfer
pathways, Proc. Natl. Acad. Sci. U.S.A.
106(29),
11857–11861 (2009),
https://doi.org/10.1073/pnas.0903586106
[31] T.P.J. Krüger, E. Wientjes, R. Croce, and R. van Grondelle,
Conformational switching explains the intrinsic
multifunctionality of plant light-harvesting complexes, Proc.
Natl. Acad. Sci. U.S.A.
108(33), 13516–13521 (2011),
https://doi.org/10.1073/pnas.1105411108
[32] T.P.J. Krüger, V.I. Novoderezkhin, C. Ilioaia, and R. van
Grondelle, Fluorescence spectral dynamics of single LHCII
trimers, Biophys. J.
98(12), 3093–3101 (2010),
https://doi.org/10.1016/j.bpj.2010.03.028
[33] I. Caspy and N. Nelson, Structure of the plant photosystem
I, Biochem. Soc. Trans.
46, 285–294 (2018),
https://doi.org/10.1042/BST20170299
[34] S. Vaitekonis, G. Trinkunas, and L. Valkunas, Red
chlorophylls in the exciton model of photosystem I, Photosynth.
Res.
86, 185–201 (2005),
https://doi.org/10.1007/s11120-005-2747-x
[35] M.K. Sener, C. Jolley, A. Ben-Shem, P. Fromme, N. Nelson,
R. Croce, and K. Schulten, Comparison of the light-harvesting
networks of plant and cyanobacterial photosystem I, Biophys. J.
89, 1630–1642 (2005),
https://doi.org/10.1529/biophysj.105.066464
[36] E. Wientjes, I.H.M. van Stokkum, H. van Amerongen, and R.
Croce, The role of the individual Lhcas in photosystem I
excitation energy trapping, Biophys. J.
101(3), 745–754
(2011),
https://doi.org/10.1016/j.bpj.2011.06.045
[37] E. Wientjes, H. van Amerongen, and R. Croce, LHCII is an
antenna of both photosystems after long-term acclimation,
Biochim. Biophys. Acta Bioenerg.
1827(3), 420–426
(2013),
https://doi.org/10.1016/j.bbabio.2012.12.009
[38] E. Molotokaite, W. Remelli, A.P. Casazza, G. Zucchelli, D.
Polli, G. Cerullo, and S. Santabarbara, Trapping dynamics in
photosystem I-light harvesting complex I of higher plants is
governed by the competition between excited state diffusion from
low energy states and photochemical charge separation, J. Phys.
Chem. B
121, 9816–9830 (2017),
https://doi.org/10.1021/acs.jpcb.7b07064
[39] T.P. Causgrove, S. Yang, and W.S. Struve, Polarized
pump-probe spectroscopy of photosystem I antenna excitation
transport, J. Phys. Chem.
93(18), 6844–6850 (1989),
https://doi.org/10.1021/j100355a053
[40] S. Savikhin, W. Xu, P.R. Chitnis, and W.S. Struve,
Ultrafast primary processes in PSI from
Synechocystis
sp. PCC 6803: Roles of P700 and A(0), Biophys. J.
79,
1573–1586 (2000),
https://doi.org/10.1016/S0006-3495(00)76408-3
[41] C. Slavov, M. Ballottari, T. Morosinotto, R. Bassi, and
A.R. Holzwarth, Trap-limited charge separation kinetics in
higher plant photosystem I complexes, Biophys. J.
94,
3601–3612 (2008),
https://doi.org/10.1529/biophysj.107.117101
[42] B. van Oort, M. Alberts, S. de Bianchi, L. Dall'Osto, R.
Bassi, G. Trinkunas, R. Croce, and H. van Amerongen, Effect of
antenna-depletion in photosystem II on excitation energy
transfer in
Arabidopsis thaliana, Biophys. J.
98(5),
922–931 (2010),
https://doi.org/10.1016/j.bpj.2009.11.012
[43] R.C. Jennings, G. Zucchelli, R. Croce, and F.M. Garlaschi,
The photochemical trapping rate from red spectral states in
PSI–LHCI is determined by thermal activation of energy transfer
to bulk chlorophylls, Biochim. Biophys. Acta Bioenerg.
1557,
91–98 (2003),
https://doi.org/10.1016/S0005-2728(02)00399-7
[44] S. Vassiliev, C.-I. Lee, G.W. Brudvig, and D. Bruce,
Structure-based kinetic modeling of excited-state transfer and
trapping in histidine-tagged photosystem II core complexes from
Synechocystis, Biochemistry 41(40), 12236–12243 (2002),
https://doi.org/10.1021/bi0262597
[45] E.G. Andrizhiyevskaya, D. Frolov, R. van Grondelle, and
J.P. Dekker, On the role of the CP47 core antenna in the energy
transfer and trapping dynamics of photosystem II, Phys. Chem.
Chem. Phys.
6(20), 4810–4819 (2004),
https://doi.org/10.1039/b411977k
[46] M.L. Groot, N.P. Pawlowicz, L.J.G.W. van Wilderen, J.
Breton, I.H.M. van Stokkum, and R. van Grondelle, Initial
electron donor and acceptor in isolated Photosystem II reaction
centers identified with femtosecond mid-IR spectroscopy, Proc.
Natl. Acad. Sci. U.S.A.
102(37), 13087–13092 (2005),
https://doi.org/10.1073/pnas.0503483102
[47] Y. Miloslavina, M. Szczepaniak, M.G. Müller, J. Sander, M.
Nowaczyk, M. Rögner, and A.R. Holzwarth, Charge separation
kinetics in intact photosystem II core particles is
trap-limited. A picosecond fluorescence study, Biochemistry
45(7),
2436–2442 (2006),
https://doi.org/10.1021/bi052248c
[48] K. Broess, G. Trinkunas, A. van Hoek, R. Croce, and H. van
Amerongen, Determination of the excitation migration time in
photosystem II – consequences for the membrane organization and
charge separation parameters, Biochim. Biophys. Acta Bioenerg.
1777(5),
404–409 (2008),
https://doi.org/10.1016/j.bbabio.2008.02.003
[49] K. Amarnath, D.I.G. Bennett, A.R. Schneider, and G.R.
Fleming, Multiscale model of light harvesting by photosystem II
in plants, Proc. Natl. Acad. Sci. U.S.A.
113, 1156–1161
(2016),
https://doi.org/10.1073/pnas.1524999113
[50] D.I.G. Bennett, G.R. Fleming, and K. Amarnath,
Energy-dependent quenching adjusts the excitation diffusion
length to regulate photosynthetic light harvesting, Proc. Natl.
Acad. Sci. U.S.A.
115, E9523–E9531 (2018),
https://doi.org/10.1073/pnas.1806597115
[51] C.D. van der Weij-de Wit, J.P. Dekker, R. van Grondelle,
and I.H.M. van Stokkum, Charge separation is virtually
irreversible in photosystem II core complexes with oxidized
primary quinone acceptor, J. Phys. Chem. A
115(16),
3947–3956 (2011),
https://doi.org/10.1021/jp1083746