Received 9 May 2018; revised 7 October 2018; accepted 15 October
2018
References
/
Nuorodos
[1] T. Fjelde, D. Wolfson, P.B. Hansen, A. Kloch, C. Janz, A.
Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and B. Dagens, 20
Gbit/s optical wavelength conversion in all-active Mach-Zehnder
interferometer, Electron. Lett.
35(11), 913–914 (1999),
https://doi.org/10.1049/el:19990656
[2] J.W. Wu and A.K. Sarma, Ultrafast all-optical XOR logic gate
based on a symmetrical Mach-Zehnder interferometer employing SOI
waveguides, Opt. Commun.
283(14), 2914–2917 (2010),
https://doi.org/10.1016/j.optcom.2010.02.045
[3] H.M. Gong, X. Chen, Y.R. Qu, Q. Li, M. Yan, and M. Qiu,
Photothermal switching based on silicon Mach-Zehnder
interferometer integrated with light absorber, IEEE Photon. J.
8(2),
7802610 (2016),
https://doi.org/10.1109/JPHOT.2016.2550319
[4] D. Melati, A. Waqas, Z. Mushtaq, and A. Melloni, Wideband
integrated optical delay line based on a continuously tunable
Mach-Zehnder interferometer, IEEE J. Sel. Top. Quant.
24(1),
4400108 (2018),
https://doi.org/10.1109/JSTQE.2017.2723955
[5] X.J. Yu, D. Bu, X.F. Chen, J.T. Zhang, and S.C. Liu, Lateral
stress sensor based on an in-fiber Mach-Zehnder interferometer
and Fourier analysis, IEEE Photon. J.
8(2), 6801710
(2016),
https://doi.org/10.1109/JPHOT.2016.2538958
[6] H. Vahed, S. Aghazadeh, Amplifier action of a nonlinear
Mach-Zehnder interferometer by using of saturable nonlinear arm,
Indian J. Phys.
91(5), 569–573 (2017),
https://doi.org/10.1007/s12648-016-0946-2
[7] R.A. Soref, F. De Leonardis, and V.M.N. Passaro,
Reconfigurable optical-microwave filter banks using
thermo-optically tuned Bragg Mach-Zehnder devices, Opt. Express
26(12), 14879–14893 (2018),
https://doi.org/10.1364/OE.26.014879
[8] A. Kotb and K.E. Zoiros, Performance analysis of all-optical
XOR gate with photonic crystal semiconductor optical
amplifier-assisted Mach-Zehnder interferometer at 160 Gb/s, Opt.
Commun.
402, 511–517 (2017),
https://doi.org/10.1016/j.optcom.2017.06.050
[9] S.W. Guo and J.W. Wu, Pulse generation and compression using
an asymmetrical porous silicon-based Mach-Zehnder interferometer
configuration, Pramana J. Phys.
87, 91 (2016),
https://doi.org/10.1007/s12043-016-1301-z
[10] C. Chen, X. Hou, and J.H. Si, Protein analysis by
Mach-Zehnder interferometers with a hybrid plasmonic waveguide
with nano-slots, Opt. Express
25(25), 31294–31308
(2017),
https://doi.org/10.1364/OE.25.031294
[11] J.C. Sales, A.F.G.F. Filho, A.C. Ferreira, J.R.R. Sousa,
K.M.V. Avila, D.N.S. Cavalcante, F.T.C.B. Magalhaes, C.S.
Sobrinho, P.V.F. Pinto, and G.F. Guimaraes, Mach-Zehnder
nonlinear interferometer in photonic crystal fibers with
nonlinearity profiles, J. Nonlinear Opt. Phys.
24(3),
1550036 (2015),
https://doi.org/10.1142/S0218863515500368
[12] S. Vyas, T. Tanabe, M. Tiwari, and G. Singh, Ultraflat
broadband supercontinuum in highly nonlinear Ge
11.5As
24Se
64.5
photonic crystal fibres, Ukr. J. Phys. Opt.
17(3),
132–139 (2016),
https://doi.org/10.3116/16091833/17/3/132/2016
[13] T.L. Cheng, Y. Kanou, X.J. Xue, D.H. Deng, M. Matsumoto, T.
Misumi, T. Suzuki, and Y. Ohishi, Mid-infrared supercontinuum
generation in a novel AsSe
2-As
2S
5
hybrid microstructured optical fiber, Opt. Express
22(19),
23019–23025 (2014),
https://doi.org/10.1364/OE.22.023019
[14] L. Chen, W.Q. Gao, L. Chen, P. Wang, C.Q. Ni, X.C. Chen, Y.
Zhou, W. Zhang, J.G. Hu, and M.S. Liao, Numerical study on
supercontinuum generation by different optical modes in AsSe
2-As
2S
5
chalcogenide microstructured fiber, Appl. Opt.
57(3),
382–390 (2018),
https://doi.org/10.1364/AO.57.000382
[15] W.Q. Gao, Q. Xu, X. Li, W. Zhang, J.G. Hu, Y. Li, X.D.
Chen, Z.J. Yuan, M.S. Liao, and X. Li, Supercontinuum generation
in a step-index chalcogenide fiber with AsSe
2 core
and As
2S
5 cladding, Jpn. J. Appl. Phys.
55(12),
122201 (2016),
https://doi.org/10.7567/JJAP.55.122201
[16] L. Liu, T.L. Cheng, K. Nagasaka, H.T. Tong, G.S. Qin,
T. Suzuki, and Y. Ohishi, Coherent mid-infrared supercontinuum
generation in all-solid chalcogenide microstructured fibers with
all-normal dispersion, Opt. Lett.
41(2), 392–395 (2016),
https://doi.org/10.1364/OL.41.000392
[17] W.Q. Gao, T.L. Cheng, X.J. Xue, L. Liu, L. Zhang, M.S.
Liao, T. Suzuki, and Y. Ohishi, Stimulated Raman scattering in
AsSe
2-As
2S
5 chalcogenide
microstructured optical fiber with all-solid core, Opt. Express
24(4), 3278–3293 (2016),
https://doi.org/10.1364/OE.24.003278
[18] Z.B. Tian and D.V. Plant, Picosecond flat-top pulse
generation using dual-mode fiber Mach–Zehnder interferometers,
Opt. Lett.
36(23), 4542–4544 (2011),
https://doi.org/10.1364/OL.36.004542
[19] S.L. Pan and J.P. Yao, Switchable UWB pulse generation
using a phase modulator and a reconfigurable asymmetric
Mach–Zehnder interferometer, Opt. Lett.
34(2), 160–162
(2009),
https://doi.org/10.1364/OL.34.000160
[20] V. Moreno, M. Rius, J. Mora, M.A. Muriel, and J. Capmany,
Integrable high order UWB pulse photonic generator based on
cross phase modulation in a SOA-MZI, Opt. Express
21(19),
22911-22917 (2013),
https://doi.org/10.1364/OE.21.022911
[21] R. Palmer, L. Alloatti, D. Korn, P.C. Schindler, R.
Schmogrow, W. Heni, S. Koenig, J. Bolten, T. Wahlbrink, M.
Waldow, et al., Silicon-organic hybrid MZI modulator generating
OOK, BPSK and 8-ASK signals for up to 84 Gbit/s, IEEE Photon. J.
5(2), 6600907 (2013),
https://doi.org/10.1109/JPHOT.2013.2258142
[22] P. Cao, X.F. Hu, J.Y. Wu, L. Zhang, X.H. Jiang, and Y.K.
Su, Reconfigurable UWB pulse generation based on a dual-drive
Mach-Zehnder modulator, IEEE Photon. J.
6(5), 7903206
(2014),
https://doi.org/10.1109/JPHOT.2014.2352632
[23] K. Michailovas, A. Zaukevičius, V. Petrauskienė, V.
Smilgevičius, S. Balickas, and A. Michailovas, Sub-20 ps high
energy pulses from 1 kHz neodymium-based CPA, Lith. J. Phys.
58(2),
159–169 (2018),
https://doi.org/10.3952/physics.v58i2.3745
[24] V.P. Veiko, V.N. Lednev, S.M. Pershin, A.A. Samokhvalov,
E.B. Yakovlev, I.Yu. Zhitenev, and A.N. Kliushin, Double
nanosecond pulses generation in ytterbium fiber laser, Rev. Sci.
Instrum.
87, 063114 (2016),
https://doi.org/10.1063/1.4953886
[25] I. Beleckaitė, L. Burakauskas, and R. Adomavičius, Study of
surface electric field and photocarrier dynamics in InAs by
means of a modified double-pump-pulse terahertz emission method,
Lith. J. Phys.
58(1), 116–125 (2018),
https://doi.org/10.3952/physics.v58i1.3657
[26] R.A. Ganeev, M. Suzuki, S. Yoneya, and H. Kuroda,
Application of double femtosecond pulses for plasma harmonic
generation, Appl. Phys. Lett.
105, 041111 (2014),
https://doi.org/10.1063/1.4891964
[27] A. Consoli and I. Esquivias, Pulse shortening of gain
switched single mode semiconductor lasers using a variable delay
interferometer, Opt. Express
20(20), 22481–22489 (2012),
https://doi.org/10.1364/OE.20.022481