[PDF] https://doi.org/10.3952/physics.v59i1.3937

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 16–25 (2019)
 


GENERATION OF SINGLE AND DOUBLE PULSES USING A SYMMETRICAL MACH–ZEHNDER INTERFEROMETER EMPLOYING MICROSTRUCTURED CHALCOGENIDE FIBRES: NUMERICAL ANALYSIS
 
Ming-Hui Jin, Shi-Han Yang, and Jian-Wei Wu
  School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, People’s Republic of China
 
E-mail: ljwwu@cqnu.edu.cn
Received 9 May 2018; revised 7 October 2018; accepted 15 October 2018

In this numerical work, a Mach–Zehnder interferometer device with sample and reference arms composed of microstructured chalcogenide optical fibres with AsSe 2 core and As 2 S 5 cladding is presented to generate single and double pulses. An unchirped hyperbolic secant-shaped pulse with enough high peak power centered at 1958 nm wavelength and a continuous wave with a very weak power level at 2070 nm wavelength are simultaneously introduced into the sample arm, in which stimulated Raman scattering and strong cross-phase modulation induced by two co-propagating waves give rise to a significant phase shift for a continuous wave. In the reference arm, the continuous wave directly passes through the fibre, where the transmitted wave has a slight phase shift due to the influence of self-phase modulation. Therefore, at the output port of the configuration, the re-combined optical fields at 2070 nm wavelength have a significant phase difference. As a result, both single and double pulses caused by the optical interference at the output port are achieved by judiciously adjusting the phase difference which is mainly controlled by the peak power and temporal width of the input optical pulse, as well as the length of a microstructured optical fibre. In addition, both widths of the single pulse and spacing of the double pulses are directly dependent on the temporal width of the input pulse and the fibre length of the arm.
Keywords: nonlinear optics, microstructured optical fibre, Mach–Zehnder interferometer, pulse generation
PACS: 42.15.Eq, 42.81.Qb, 42.65.Re

VIENGUBŲ IR DVIGUBŲ IMPULSŲ GENERAVIMAS NAUDOJANT SIMETRINĮ MACHO IR CĖNDERIO INTERFEROMETRĄ SU MIKROSTRUKTŪRUOTAIS CHALKOGENIDŲ ŠVIESOLAIDŽIAIS: SKAITINĖ ANALIZĖ
Ming-Hui Jin, Shi-Han Yang, Jian-Wei Wu

Čongčingo normaliojo universiteto Fizikos ir elektronikos inžinerijos mokykla, Čongčingas, Kinijos Liaudies Respublika
 

References / Nuorodos

[1] T. Fjelde, D. Wolfson, P.B. Hansen, A. Kloch, C. Janz, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and B. Dagens, 20 Gbit/s optical wavelength conversion in all-active Mach-Zehnder interferometer, Electron. Lett. 35(11), 913–914 (1999),
https://doi.org/10.1049/el:19990656
[2] J.W. Wu and A.K. Sarma, Ultrafast all-optical XOR logic gate based on a symmetrical Mach-Zehnder interferometer employing SOI waveguides, Opt. Commun. 283(14), 2914–2917 (2010),
https://doi.org/10.1016/j.optcom.2010.02.045
[3] H.M. Gong, X. Chen, Y.R. Qu, Q. Li, M. Yan, and M. Qiu, Photothermal switching based on silicon Mach-Zehnder interferometer integrated with light absorber, IEEE Photon. J. 8(2), 7802610 (2016),
https://doi.org/10.1109/JPHOT.2016.2550319
[4] D. Melati, A. Waqas, Z. Mushtaq, and A. Melloni, Wideband integrated optical delay line based on a continuously tunable Mach-Zehnder interferometer, IEEE J. Sel. Top. Quant. 24(1), 4400108 (2018),
https://doi.org/10.1109/JSTQE.2017.2723955
[5] X.J. Yu, D. Bu, X.F. Chen, J.T. Zhang, and S.C. Liu, Lateral stress sensor based on an in-fiber Mach-Zehnder interferometer and Fourier analysis, IEEE Photon. J. 8(2), 6801710 (2016),
https://doi.org/10.1109/JPHOT.2016.2538958
[6] H. Vahed, S. Aghazadeh, Amplifier action of a nonlinear Mach-Zehnder interferometer by using of saturable nonlinear arm, Indian J. Phys. 91(5), 569–573 (2017),
https://doi.org/10.1007/s12648-016-0946-2
[7] R.A. Soref, F. De Leonardis, and V.M.N. Passaro, Reconfigurable optical-microwave filter banks using thermo-optically tuned Bragg Mach-Zehnder devices, Opt. Express 26(12), 14879–14893 (2018),
https://doi.org/10.1364/OE.26.014879
[8] A. Kotb and K.E. Zoiros, Performance analysis of all-optical XOR gate with photonic crystal semiconductor optical amplifier-assisted Mach-Zehnder interferometer at 160 Gb/s, Opt. Commun. 402, 511–517 (2017),
https://doi.org/10.1016/j.optcom.2017.06.050
[9] S.W. Guo and J.W. Wu, Pulse generation and compression using an asymmetrical porous silicon-based Mach-Zehnder interferometer configuration, Pramana J. Phys. 87, 91 (2016),
https://doi.org/10.1007/s12043-016-1301-z
[10] C. Chen, X. Hou, and J.H. Si, Protein analysis by Mach-Zehnder interferometers with a hybrid plasmonic waveguide with nano-slots, Opt. Express 25(25), 31294–31308 (2017),
https://doi.org/10.1364/OE.25.031294
[11] J.C. Sales, A.F.G.F. Filho, A.C. Ferreira, J.R.R. Sou­sa, K.M.V. Avila, D.N.S. Cavalcante, F.T.C.B. Ma­galhaes, C.S. Sobrinho, P.V.F. Pinto, and G.F. Gui­maraes, Mach-Zehnder nonlinear interferometer in photonic crystal fibers with nonlinearity profiles, J. Nonlinear Opt. Phys. 24(3), 1550036 (2015),
https://doi.org/10.1142/S0218863515500368
[12] S. Vyas, T. Tanabe, M. Tiwari, and G. Singh, Ultraflat broadband supercontinuum in highly nonlinear Ge11.5As24Se64.5 photonic crystal fibres, Ukr. J. Phys. Opt. 17(3), 132–139 (2016),
https://doi.org/10.3116/16091833/17/3/132/2016
[13] T.L. Cheng, Y. Kanou, X.J. Xue, D.H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber, Opt. Express 22(19), 23019–23025 (2014),
https://doi.org/10.1364/OE.22.023019
[14] L. Chen, W.Q. Gao, L. Chen, P. Wang, C.Q. Ni, X.C. Chen, Y. Zhou, W. Zhang, J.G. Hu, and M.S. Liao, Numerical study on supercontinuum generation by different optical modes in AsSe2-As2S5 chalcogenide microstructured fiber, Appl. Opt. 57(3), 382–390 (2018),
https://doi.org/10.1364/AO.57.000382
[15] W.Q. Gao, Q. Xu, X. Li, W. Zhang, J.G. Hu, Y. Li, X.D. Chen, Z.J. Yuan, M.S. Liao, and X. Li, Supercontinuum generation in a step-index chalcogenide fiber with AsSe2 core and As2S5 cladding, Jpn. J. Appl. Phys. 55(12), 122201 (2016),
https://doi.org/10.7567/JJAP.55.122201
[16]  L. Liu, T.L. Cheng, K. Nagasaka, H.T. Tong, G.S. Qin, T. Suzuki, and Y. Ohishi, Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion, Opt. Lett. 41(2), 392–395 (2016),
https://doi.org/10.1364/OL.41.000392
[17] W.Q. Gao, T.L. Cheng, X.J. Xue, L. Liu, L. Zhang, M.S. Liao, T. Suzuki, and Y. Ohishi, Stimulated Raman scattering in AsSe2-As2S5 chalcogenide microstructured optical fiber with all-solid core, Opt. Express 24(4), 3278–3293 (2016),
https://doi.org/10.1364/OE.24.003278
[18] Z.B. Tian and D.V. Plant, Picosecond flat-top pulse generation using dual-mode fiber Mach–Zehnder interferometers, Opt. Lett. 36(23), 4542–4544 (2011),
https://doi.org/10.1364/OL.36.004542
[19] S.L. Pan and J.P. Yao, Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach–Zehnder interferometer, Opt. Lett. 34(2), 160–162 (2009),
https://doi.org/10.1364/OL.34.000160
[20] V. Moreno, M. Rius, J. Mora, M.A. Muriel, and J. Capmany, Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI, Opt. Express 21(19), 22911-22917 (2013),
https://doi.org/10.1364/OE.21.022911
[21] R. Palmer, L. Alloatti, D. Korn, P.C. Schindler, R. Schmo­grow, W. Heni, S. Koenig, J. Bolten, T. Wahlbrink, M. Waldow, et al., Silicon-organic hybrid MZI modulator generating OOK, BPSK and 8-ASK signals for up to 84 Gbit/s, IEEE Photon. J. 5(2), 6600907 (2013),
https://doi.org/10.1109/JPHOT.2013.2258142
[22] P. Cao, X.F. Hu, J.Y. Wu, L. Zhang, X.H. Jiang, and Y.K. Su, Reconfigurable UWB pulse generation based on a dual-drive Mach-Zehnder modulator, IEEE Photon. J. 6(5), 7903206 (2014),
https://doi.org/10.1109/JPHOT.2014.2352632
[23] K. Michailovas, A. Zaukevičius, V. Petrauskienė, V. Smilgevičius, S. Balickas, and A. Michailovas, Sub-20 ps high energy pulses from 1 kHz neodymium-based CPA, Lith. J. Phys. 58(2), 159–169 (2018),
https://doi.org/10.3952/physics.v58i2.3745
[24] V.P. Veiko, V.N. Lednev, S.M. Pershin, A.A. Sa­mokh­valov, E.B. Yakovlev, I.Yu. Zhitenev, and A.N. Kliushin, Double nanosecond pulses generation in ytterbium fiber laser, Rev. Sci. Instrum. 87, 063114 (2016),
https://doi.org/10.1063/1.4953886
[25] I. Beleckaitė, L. Burakauskas, and R. Adomavičius, Study of surface electric field and photocarrier dynamics in InAs by means of a modified double-pump-pulse terahertz emission method, Lith. J. Phys. 58(1), 116–125 (2018),
https://doi.org/10.3952/physics.v58i1.3657
[26] R.A. Ganeev, M. Suzuki, S. Yoneya, and H. Ku­roda, Application of double femtosecond pulses for plasma harmonic generation, Appl. Phys. Lett. 105, 041111 (2014),
https://doi.org/10.1063/1.4891964
[27] A. Consoli and I. Esquivias, Pulse shortening of gain switched single mode semiconductor lasers using a variable delay interferometer, Opt. Express 20(20), 22481–22489 (2012),
https://doi.org/10.1364/OE.20.022481