[PDF] https://doi.org/10.3952/physics.v59i1.3938

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 26–34 (2019)
 


RECOMBINATION AND DIFFUSION PROCESSES IN ELECTRONIC GRADE 4H SILICON CARBIDE
 
Patrik Ščajeva, Liudvikas Subačiusb, Kęstutis Jarašiūnasa, and Masashi Katoc,d
 aInstitute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
 
bCenter for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
cDepartment of Engineering Physics, Electronics and Mechanics, Nagoya Institute of Technology, Nagoya 466-8555, Japan
dFrontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya 466-8555, Japan
E-mail: liudvikas.subacius@ftmc.lt
Received 15 October 2018; revised 6 December 2018; accepted 2 January 2019

Carrier dynamics in n-type 4H-SiC epilayers of varying thicknesses and low Z1/2 defect concentrations are investigated here in wide ranges of excess carrier density and temperature. Several techniques are employed to monitor carrier diffusion and recombination processes, including light induced transient grating (LITG), microwave photoconductance decay (MPCD) and free carrier absorption (FCA) using ps-laser pulses at 355 nm. The observed increase of the diffusion coefficient with the increasing excitation level is explained by the transition from the minority to the bipolar transport regime. Its subsequent decrease with even higher excitations is found to be governed by band-gap renormalization and degeneracy effects. The bulk lifetime, limited by hole traps at 0.19–0.24 eV above the valence band at lower excitations, was found to decrease from few microseconds to hundreds of nanoseconds during the transition regime from the minority to the bipolar transport. Our temperature-dependent measurements confirmed the trap activation energy and provided the approximate functional form of electron and hole lifetimes as τe  = 340 × (T/300 K)3/2  ns and τh  = 100 × (T/300 K)–1/2  ns, for the temperature T range 80–800 K. It was found to hold for 65 and 120 μm sample thicknesses, while the lifetimes were found to be twice shorter for the sample 35 μm thick.
Keywords: silicon carbide, microwave photoconductance, free carrier absorption, transient grating, lifetime
PACS: 72.20.Jv, 72.40.+w

REKOMBINACIJOS IR DIFUZIJOS PROCESAI ELEKTRONINĖS KOKYBĖS 4H SILICIO KARBIDE
Patrik Ščajeva, Liudvikas Subačiusb, Kęstutis Jarašiūnasa, Masashi Katoc,d

aVilniaus universiteto Fotonikos ir nanotechnologijų institutas, Vilnius, Lietuva
bFizinių ir technologijos mokslų centras, Vilnius, Lietuva
cNagojos technologijos institutas, Nagoja, Japonija
 
Darbe tiriama krūvininkų dinamika jų tankio 1014 –1018 cm–3 ir temperatūros 80–800 K intervaluose fotosužadintuose n-tipo 4H-SiC sluoksniuose, 35, 65 ir 120  μm storio, legiruotuose 1015 cm–3 tankio azoto priemaišomis bei turinčiuose mažą Z1/2 defektų tankį. Šviesa indukuotų dinaminių gardelių, mikrobangų fotolaidumo bei laisvųjų krūvininkų sugerties metodikos buvo pritaikytos krūvininkų rekombinacijos ir difuzijos vyksmų tyrimams, naudojant sužadinimui pikosekundinio Nd:YAG lazerio impulsus, esant 355 nm bangos ilgiui. Krūvininkų difuzijos koeficiento didėjimas, nustatytas intensyvinant žadinimą, buvo paaiškintas pernašos mechanizmų kaita, monopolio transporto virsmu bipoliu. Stipraus žadinimo atveju gautas difuzijos koeficiento sumažėjimas buvo priskirtas daugiadalelei sąveikai bipolėje plazmoje: energijos juostų renormalizacijai ir išsigimimui. Be to, intensyvinant žadinimą, buvo nustatyta, kad trumpėja krūvininkų gyvavimo trukmė (nuo kelių mikrosekundžių iki šimtų nanosekundžių). Trumpėjimas buvo paaiškintas skylių gaudyklių (lygmuo ties EV  + 0,19–0,24 eV) įtaka bei bipolės pernašos mechanizmų fotosužadintame 4H-SiC kaita. Atlikti temperatūriniai laisvųjų krūvininkų sugerties tyrimai patvirtino mūsų modeliniuose skaičiavimuose panaudotą gaudyklių aktyvacijos energijos vertę bei leido nustatyti elektronų ir skylių gyvavimo trukmių temperatūrines priklausomybes.

References / Nuorodos

[1] P.B. Klein, Carrier lifetime measurement in n 4H-SiC epilayers, J. Appl. Phys. 103(3), 033702 (2008),
https://doi.org/10.1063/1.2837105
[2] P.B. Klein, A. Shrivastava, and T.S. Sudarshan, Slow de-trapping of minority holes in n-type 4H-SiC epilayers, Phys. Stat. Solidi A 208(12), 2790–2795 (2011),
https://doi.org/10.1002/pssa.201127260
[3] P. Ščajev, V. Gudelis, K. Jarašiūnas, and P.B. Klein, Fast and slow carrier recombination transients in highly excited 4H- and 3C-SiC crystals at room temperature, J. Appl. Phys. 108(2), 023705 (2010),
https://doi.org/10.1063/1.3459894
[4] S. Ichikawa, K. Kawahara, J. Suda, and T. Kimoto, Carrier recombination in n-type 4H-SiC epilayers with long carrier lifetimes, Appl. Phys. Express 5(10), 101301 (2012),
https://doi.org/10.1143/APEX.5.101301
[5] T. Kimoto, K. Kawahara, B. Zippelius, E. Saito, and J. Suda, Control of carbon vacancy in SiC toward ultrahigh-voltage power devices, Superlatt. Microstruct. 99, 151–157 (2016),
https://doi.org/10.1016/j.spmi.2016.03.029
[6] M. Kato, Y. Mori, and M. Ichimura, Microwave reflectivity from 4H-SiC under a high-injection condition: impacts of electron-hole scattering, Jpn. J. Appl. Phys. 44(4S), 04DP14 (2015),
https://doi.org/10.7567/JJAP.54.04DP14
[7] R.L. Myers-Ward, B.L. VanMil, K.-K. Lew, P.B. Klein, E.R. Glaser, J.D. Caldwell, M.A. Mastro, L. Wang, P. Zhao, C.R. Eddy, Jr., and D.K. Gaskill, Investigation of deep levels in nitrogen doped 4H-SiC epitaxial layers grown on 4° and 8° off-axis substrates, J. Appl. Phys. 108, 054906 (2010),
https://doi.org/10.1063/1.3475152
[8] G. Feng, J. Suda, and T. Kimoto, Characterization of stacking faults in 4H-SiC epilayers by room-temperature microphotoluminescence mapping, Appl. Phys. Lett. 92(22), 221906 (2008),
https://doi.org/10.1063/1.2937097
[9] Y. Ishikawa, M. Sudo, Y.-Z. Yao, Y. Sugawara, and M. Kato, Expansion of a single Shockley stacking fault in a 4H-SiC (1120) epitaxial layer caused by electron beam irradiation, J. Appl. Phys. 123(22),225101 (2018),
https://doi.org/10.1063/1.5026448
[10] P. Ščajev, J. Hassan, K. Jarašiūnas, M. Kato, A. Henry, and J.P. Bergman, Comparative studiesof carrier dynamics in 3C-SiC layers grown on Si and 4H-SiC substrates, J. Electron. Mater. 40(4), 394–399 (2011),
https://doi.org/10.1007/s11664-010-1378-y
[11] B. Chen, H. Matsuhata, T. Sekiguchi, A. Kino­shita, K. Ichinoseki, and H. Okumura, Tuningminority-carrier lifetime through stacking fault defects: The case of polytypic SiC, Appl. Phys. Lett. 100(13), 132108 (2012),
https://doi.org/10.1063/1.3700963
[12] J. Zhang, L. Storasta, J.P. Bergman, N.T. Son, and E. Janzen, Electrically active defects in n-type 4H-silicon carbide grown in a vertical hot-wall reactor, J. Appl. Phys. 93, 4708 (2003),
https://doi.org/10.1063/1.1543240
[13] L. Torpo, M. Marlo, T.E.M. Staab, and R.M. Nie­mi­nen, Comprehensive ab initio study of properties of monovacancies and antisites in 4H-SiC, J. Phys. Condens. Matter 13(28), 6203–6231 (2001),
https://doi.org/10.1088/0953-8984/13/28/305
[14] L. Storasta, J.P. Bergman, E. Janzen, A. Henry, and J. Lu, Deep levels created by low energy electron irradiation in 4H-SiC, J. Appl. Phys. 96(9), 4909 (2004),
https://doi.org/10.1063/1.1778819
[15] Y. Ichikawa, M. Ichimura, T. Kimoto, and M. Ka­to, Passivation of surface recombination at the Si-face of 4H-SiC by acidic solutions, ECS J. Solid State Sci. Technol. 7(8), Q127–Q130 (2018),
https://doi.org/10.1149/2.0031808jss
[16] T. Kimoto, K. Danno, and J. Suda, Lifetime-killing defects in 4H-SiC epilayers and lifetime control by low-energy electron irradiation, Phys. Stat. Solidi B 245(7), 1327–1336 (2008),
https://doi.org/10.1002/pssb.200844076
[17] P. Ščajev, M. Kato, and K. Jarašiūnas, A diffraction-based technique for determination of inter-band absorption coefficients in bulk 3C-, 4H- and 6H-SiC crystals, J. Phys. D 44(36), 365402 (2011),
https://doi.org/10.1088/0022-3727/44/36/365402
[18] P.B. Klein, R. Myers-Ward, K.-K. Lew, B.L. VanMil, C.R. Eddy, D.K. Gaskill Jr., A. Shrivastava, and T.S. Sudarshan, Recombination processes controlling the carrier lifetime in n 4H-SiC epilayers with low Z1/2 concentrations, J. Appl. Phys. 108, 033713 (2010),
https://doi.org/10.1063/1.3466745
[19] H.J. Eichler, P. Gunter, and D.W. Pohl, Laser-induced Dynamic Grattings (Springer-Verlag, New York, 1986),
https://doi.org/10.1007/978-3-540-39662-8
[20] K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, V. Gu­delis, T. Tamulevicius, S. Tamulevicius, A. Guo­biene, A. Usikov, V. Dmitriev, and H.J. Ger­ritsen, Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers, Rev. Sci. Instrum. 78(3), 33901 (2007),
https://doi.org/10.1063/1.2712788
[21] P. Ščajev, R. Aleksiejūnas, S. Miasojedovas, S. Nar­gelas, M. Inoue, C. Qin, T. Matsushima, C. Ada­chi, and S. Juršėnas, Two regimes of carrier diffusion in vapor-deposited lead-halide perovskites, J. Phys. Chem. C 121(39), 21600–21609 (2017),
https://doi.org/10.1021/acs.jpcc.7b04179
[22] L. Subačius, K. Jarašiūnas, P. Ščajev, and M. Kato, Development of a microwave photoconductance measurement technique for the study of carrier dynamics in highly-excited 4H-SiC, Meas. Sci. Technol. 26(12), 125014 (2015),
https://doi.org/10.1088/0957-0233/26/12/125014
[23] P. Grivickas, J. Linnros, and V. Grivickas, Carrier diffusion characterization in epitaxial 4H-SiC, J. Mater. Res. 16(2), 524–528 (2001),
https://doi.org/10.1557/JMR.2001.0075
[24] P. Ščajev and K. Jarašiūnas, Temperature- and excitation-dependent carrier diffusivity and recombination rate in 4H-SiC, J. Phys. D 46(26), 265304 (2013),
https://doi.org/10.1088/0022-3727/46/26/265304
[25] J. Linnros and V. Grivickas, Carrier-diffusion measurements in silicon with a Fourier-transient-grating method, Phys. Rev. B 50, 16943–16955 (1994),
https://doi.org/10.1103/PhysRevB.50.16943
[26] J. Pernot, S. Contreras, and J. Camassel, Electrical transport properties of aluminum-implanted 4H-SiC, J. Appl. Phys. 98, 023706 (2005),
https://doi.org/10.1063/1.1978987
[27] J.F. Young and H.M. Driel, Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects, Phys. Rev. B 26, 2147–2158 (1982),
https://doi.org/10.1103/PhysRevB.26.2147
[28] G. Liaugaudas, P. Ščajev, and K. Jarašiūnas, Carrier dynamics and photoelectrical parameters in highly compensated sublimation grown 3C-SiC layers studied by time-resolved nonlinear optical techniques, Semicond. Sci. Technol. 29(1), 015004 (2014),
https://doi.org/10.1088/0268-1242/29/1/015004
[29] W. Shockley and W.T. Read, Statistics of the recombinations of holes and electrons, Phys. Rev. 87, 835–842 (1952),
https://doi.org/10.1103/PhysRev.87.835
[30] B.K. Ridley, Quantum Processes in Semiconductors (Clarendon Press, Oxford, 1999),
https://global.oup.com/academic/product/quantum-processes-in-semiconductors-9780198517511
[31] N.T. Son, X.T. Trinh, L.S. Løvlie, B.G. Svensson, K. Kawahara, J. Suda, T. Kimoto, T. Umeda, J. Iso­ya, T. Makino, T. Ohshima, and E. Janzén, Negative-U system of carbon vacancy in 4H-SiC, Phys. Rev. Lett. 109, 187603 (2012),
https://doi.org/10.1103/PhysRevLett.109.187603
[32] M. Boulou and D. Bois, Cathodoluminescence measurements of the minority‐carrier lifetime in semiconductors, J. Appl. Phys. 48(11), 4713–4721 (1977), https://doi.org/10.1063/1.323537
[33] A.B. Sproul, Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors, J. Appl. Phys. 76, 2851–2854 (1994),
https://doi.org/10.1063/1.357521
[34] S.S. Suvanam, K. Gulbinas, M. Usman, M.K. Lin­narson, D.M. Martin, J. Linnros, V. Grivickas, and A. Hallén, 4H-silicon carbide-dielectric interface recombination analysis using free carrier absorption, J. Appl. Phys. 117, 105309 (2015),
https://doi.org/10.1063/1.4914521