[PDF] https://doi.org/10.3952/physics.v59i1.3939

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 35–46 (2019)
 


SHIFT OF THE COLLECTIVE MODE OF POLARIZED GRAPHENE ON A SUBSTRATE USING SPIN-SENSITIVE RESPONSE THEORY
 
Dominik Kreil, Michaela Haslhofer, and Helga M. Böhm
  Institute for Theoretical Physics, Johannes Kepler University, Altenbergerstraβe 69, 4040 Linz, Austria
 
E-mail: dominik.kreil@jku.at
Received 7 June 2018; revised 6 July 2018; accepted 15 October 2018

The growing precision of optical and scattering experiments necessitates a better understanding of the influence of damping onto the collective mode of sheet electrons. As spin-polarized systems are of particular interest for spintronic applications, we here report spin-sensitive linear response functions of graphene, which give access to charge- and spin-density related excitations. We further calculate the  reflectivity of graphene on an SiO2 surface, a  setup used in s-wave scanning near-field microscopy. Increasing the partial spin-polarization of the graphene charge carriers leads to a significant broadening and shift of the plasmon mode, due to single-particle interband transitions of the minority spin carriers. We also predict an antiresonance in the longitudinal magnetic response function, similar to that of semiconductor heterostructures.
Keywords: graphene, s-SNOM, collective modes, plasmom, reflectivity
PACS: 68.65.Pq, 05.30.Fk, 71.45.Gm, 71.45.-d, 71.10.-w, 71.10.Ca

POLIARIZUOTO GRAFENO ANT PADĖKLO KOLEKTYVINĖS MODOS POSLINKIS PAGAL SUKINIUI JAUTRAUS ATSAKO TEORIJĄ
 Dominik Kreil, Michaela Haslhofer, Helga M. Böhm

Johaneso Keplerio universiteto Teorinės fizikos institutas, Lincas, Austrija
 

References / Nuorodos

[1] N.D. Mermin, Crystalline order in two dimensions, Phys. Rev. 176, 250 (1968),
https://doi.org/10.1103/PhysRev.176.250
[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666–669 (2004),
https://doi.org/10.1126/science.1102896
[3] Statistical Mechanics of Membranes and Surfaces, eds. D.R. Nelson. T. Piran, and S. Weinberg (World Scientific, 2004),
https://doi.org/10.1142/5473
[4] P.L. Doussal and L. Radzihovsky, Self-consistent theory of polymerized membranes, Phys. Rev. Lett. 69, 1209 (1992),
https://doi.org/10.1103/PhysRevLett.69.1209
[5] S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Sche­din, L.A. Ponomarenko, D. Jiang, and A.K. Geim, Strong suppression of weak localization in graphene, Phys. Rev. Lett. 97, 016801 (2006),
https://doi.org/10.1103/PhysRevLett.97.016801
[6] A. Vakil and N. Engheta, Transformation optics using graphene, Science 332, 1291–1294 (2011),
https://doi.org/10.1126/science.1202691
[7] B. Yao, Y. Liu, S.-W. Huang, C. Choi, Z. Xie, J.F. Flores, Y. Wu, M. Yu, D.-L. Kwong, Y. Huang, et al., Broadband gate-tunable terahertz plasmons in graphene heterostructures, Nat. Photonics 12, 22 (2018),
https://doi.org/10.1038/s41566-017-0054-7
[8] F. J. Garcia de Abajo, Graphene plasmonics: challenges and opportunities, ACS Photonics 1, 135–152 (2014),
https://doi.org/10.1021/ph400147y
[9] Z. Fei, G.O. Andreev, W. Bao, L.M. Zhang, A.S. McLeod, C. Wang, M.K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, et al., Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface, Nano Lett. 11, 4701–4705 (2011),
https://doi.org/10.1021/nl202362d
[10] H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, Damping pathways of mid-infrared plasmons in graphene nanostructures, Nat. Photonics 7, 394 (2013),
https://doi.org/10.1038/nphoton.2013.57
[11] T. Low and P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8, 1086–1101 (2014),
https://doi.org/10.1021/nn406627u
[12] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009),
https://doi.org/10.1103/RevModPhys.81.109
[13] L.D. Landau, On the vibrations of the electronic plasma, Zh. Eksp. Teor. Fiz. 10, 25 (1946)
[14] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Spintronics: a spin-based electronics vision for the future, Science 294, 1488–1495 (2001),
https://doi.org/10.1126/science.1065389
[15] A. Agarwal, M. Polini, G. Vignale, and M.E. Flatté, Long-lived spin plasmons in a spin-polarized two-dimensional electron gas, Phys. Rev. B 90, 155409 (2014),
https://doi.org/10.1103/PhysRevB.90.155409
[16] D. Kreil, R. Hobbiger, J.T. Drachta, and H.M. Böhm, Excitations in a spin-polarized two-dimensional electron gas, Phys. Rev. B 92, 205426 (2015),
https://doi.org/10.1103/PhysRevB.92.205426
[17] R. Hobbiger, J.T. Drachta, D. Kreil, and H.M. Böhm, Phenomenological plasmon broadening and relation to the dispersion, Solid State Commun. 252, 54–58 (2017),
https://doi.org/10.1016/j.ssc.2017.01.011
[18] D. Pines, Elementary Excitations in Solids (Perseus Books, Massachusetts, 1999),
https://www.crcpress.com/Elementary-Excitations-In-Solids/Pines/p/book/9780738201153
[19] C. Lee, J.Y. Kim, S. Bae, K.S. Kim, B.H. Hong, and E.J. Choi, Optical response of large scale single layer graphene, Appl. Phys. Lett. 98, 071905 (2011),
https://doi.org/10.1063/1.3555425
[20] M. Bonitz, Quantum Kinetic Theory (Springer, 1998),
https://www.springer.com/gp/book/9783319241197
[21] C.F. Hirjibehedin, A. Pinczuk, B.S. Dennis, L.N. Pfeiffer, and K.W. West, Evidence of electron correlations in plasmon dispersions of ultralow density two-dimensional electron systems, Phys. Rev. B 65, 161309 (2002),
https://doi.org/10.1103/PhysRevB.65.161309
[22] F. Perez, Spin-polarized two-dimensional electron gas embedded in a semi-magnetic quantum well: Ground state, spin responses, spin excitations, and Raman spectrum, Phys. Rev. B 79, 045306 (2009),
https://doi.org/10.1103/PhysRevB.79.045306
[23] S. Abdelouahed, A. Ernst, J. Henk, I.V. Maz­ni­chenko, and I. Mertig, Spin-split electronic states in graphene: Effects due to lattice deformation, Rashba effect, and adatoms by first principles, Phys. Rev. B 82, 125424 (2010),
https://doi.org/10.1103/PhysRevB.82.125424
[24] D.V. Fedorov, M. Gradhand, S. Ostanin, I.V. Maz­nichenko, A. Ernst, J. Fabian, and I. Mertig, Impact of electron-impurity scattering on the spin relaxation time in graphene: A first-principles study, Phys. Rev. Lett. 110, 156602 (2013),
https://doi.org/10.1103/PhysRevLett.110.156602
[25] M.W.C. Dharma-Wardana, Coulomb interactions of massless Dirac fermions in graphene; pair-distribution functions and exchange-driven spin-polarized phases, Solid State Comm. 140, 4–8 (2006),
https://doi.org/10.1016/j.ssc.2006.07.044
[26] D.R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Ha­rack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, et al., Experimental review of graphene, ISRN Cond. Matt. Phys. 2012, Article ID 501686 (2012),
https://doi.org/10.5402/2012/501686
[27] B. Wunsch, T. Stauber, F. Sols, and F. Guine, Dynamical polarization of graphene at finite doping, New J. Phys. 8, 318 (2006),
https://doi.org/10.1088/1367-2630/8/12/318
[28] N. Iwamoto, Static local-field corrections of two-dimensional electron liquids, Phys. Rev. B 43, 2174–2182 (1991),
https://doi.org/10.1103/PhysRevB.43.2174
[29] G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, 2005),
https://doi.org/10.1017/CBO9780511619915
[30] R. Asgari, A.L. Subaşı, A.A. Sabouri-Dodaran, and B. Tanatar, Static local-field factors in a two-dimensional electron liquid, Phys. Rev. B 74, 155319 (2006),
https://doi.org/10.1103/PhysRevB.74.155319
[31] J. Moreno and D.C. Marinescu, Local-field factors in a polarized two-dimensional electron gas, Phys. Rev. B 68(19), 195210 (2003),
https://doi.org/10.1103/PhysRevB.68.195210
[32] H.M. Böhm, R. Holler, E. Krotscheck, and M. Panholzer, Dynamic many-body theory: Dynamics of strongly correlated Fermi fluids, Phys. Rev. B 82(22), 224505 (2010),
https://doi.org/10.1103/PhysRevB.82.224505
[33] M. Panholzer, M. Gatti, and L. Reining, Nonlocal and nonadiabatic effects in the charge-density response of solids: A time-dependent density-functional approach, Phys. Rev. Lett. 120(16), 166402 (2018),
https://doi.org/10.1103/PhysRevLett.120.166402
[34] M. Gibertini, A. Singha, V. Pellegrini, M. Polini, G. Vig­nale, A. Pinczuk, L.N. Pfeiffer, and K.W. West, Engineering artificial graphene in a two-dimensional electron gas, Phys. Rev. B 79, 241406 (2009),
https://doi.org/10.1103/PhysRevB.79.241406
[35] M. Polini, F. Guinea, M. Lewenstein, H.C. Ma­no­haran, and V. Pellegrini, Artificial honeycomb lattices for electrons, atoms and photons, Nat. Nanotechnol. 8, 625 (2013),
https://doi.org/10.1038/nnano.2013.161
[36] S. Wang, D. Scarabelli, L. Du, Y.Y. Kuznetsova, L.N. Pfeif­fer, K.W. West, G.C. Gardner, M.J. Man­fra, V. Pellegrini, S.J. Wind, et al., Observation of Dirac bands in artificial graphene in small-period nanopatterned GaAs quantum wells, Nat. Nanotechnol. 13, 29 (2018),
https://doi.org/10.1038/s41565-017-0006-x
[37] Note 1. The parameter rS , termed α in graphene, has the constant value of approx. 2.2
[38] Y. Liu, R.F. Willis, K.V. Emtsev, and T. Seyller, Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets, Phys. Rev. B 78, 201403 (2008),
https://doi.org/10.1103/PhysRevB.78.201403
[39] D. Kreil, C. Staudinger, K. Astleithner, and H.M. Böhm, Resonant and anti-resonant modes of the dilute, spin-inbalanced, two-dimensional electron liquid including correlations, Contrib. Plasm. Phys. 58, 179–188 (2018),
https://doi.org/10.1002/ctpp.201700147
[40] U. Fano, Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d'arco, Nuovo Cimento 12, 154–161 (1935),
https://doi.org/10.1007/BF02958288
[41] F.J. Garcia de Abajo, Colloquium: Light scattering by particle and hole arrays, Rev. Mod. Phys. 79, 1267 (2007),
https://doi.org/10.1103/RevModPhys.79.1267
[42] J. Aizpurua, T. Taubner, F.J. García de Abajo, M. Brehm, and R. Hillenbrand, Substrate-enhanced infrared near-field spectroscopy, Opt. Expr. 16, 1529–1545 (2008),
https://doi.org/10.1364/OE.16.001529
[43] Z. Fei, private communication