[PDF] https://doi.org/10.3952/physics.v59i1.3940

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 47–56 (2019)
 


LONG-TERM STUDY OF ATMOSPHERIC MERCURY DEPOSITION AT MONITORING STATIONS IN LITHUANIA
Jonas Šakalys, Kęstutis Kvietkus, Inga Garbarienė, and Andriejus Urba
  State Research Institute Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
 
E-mail: kestutis.kvietkus@ftmc.lt
Received 12 July 2018; revised 4 October 2018; accepted 15 October 2018

The results of the  long-term study of atmospheric mercury concentrations in the  rain water carried out at the Aukštaitija and Žemaitija integrated monitoring stations are presented in this work. The bulk precipitation samples at both stations were collected every week during the 2007–2017 period. The mercury measurement method is based on the absorption of radiation by mercury vapour at the 253.7 nm line. The monthly samples of precipitation after preparation were analysed using a mercury analyzer ‘Gardis’ developed at our institution. The average annual concentrations, deposition amounts and trends of mercury in the precipitation over the period of 2007–2017 were analysed. The tendency of average monthly mercury concentrations in the precipitation at the Žemaitija station was continuously increasing before 2011, however, after 2012 it has a decreasing tendency which was contrary to that at the Aukštaitija station. At the same time, the tendencies of average monthly amounts of mercury deposited with precipitation showed decreasing amounts, especially at the Žemaitija station. Explanation of the above-mentioned phenomenon is complicated and the main reason is very changeable air mass trajectories and irregularity of precipitation.
Keywords: mercury, atmosphere, precipitation, concentration, deposition
PACS: 92.60.Sz, 92.60.Fm, 92.60.Jq, 92.70.Cr

GYVSIDABRIO NUSĖDIMO IŠ ATMOSFEROS ILGALAIKIAI TYRIMAI LIETUVOS MONITORINGO STOTYSE
Jonas Šakalys, Kęstutis Kvietkus, Inga Garbarienė, Andriejus Urba

Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
 
laikių matavimų rezultatai Aukštaitijos ir Žemaitijos integruoto monitoringo stotyse (IMS). Lietaus kritulių bandiniai buvo imami kiekvieną savaitę 2007–2017 metais. Gyvsidabrio koncentracijos buvo matuojamos mūsų institucijoje sukurtu atominiu absorbciniu gyvsidabrio analizatoriumi „Gardis“. Prietaisas išbandytas įvairiose interkalibracijose ir yra pripažintas tarptautiniu mastu. Darbe pateiktos vidutinės mėnesinės ir metinės gyv­sidab­rio koncentracijos, jų kitimas dešimties metų laikotarpiu ir nusėdimo kiekių į žemės paviršių analizė. Vakarinėje Lietuvos dalyje vidutinės mėnesinės gyvsidabrio koncentracijos krituliuose pamažu didėjo iki 2011  m., tačiau nuo 2012 m. buvo pastebėta gyvsidabrio koncentracijos mažėjimo tendencija. Rytinėje Lietuvos dalyje stebima priešinga gyvsidabrio koncentracijos svyravimo krituliuose eiga (iki 2011 m. ‒ mažėja, nuo 2012 m. ‒ didėja). Tuo pat metu nustatyta bendra abiems stotims žemės paviršiaus apkrovos Hg mažėjimo tendencija, ypač ryški Žemaitijos IMS. Anksčiau aprašytus reiškinius būtų galima paaiškinti didele oro masių pernašos trajektorijų kaita ir kritulių nereguliarumu abiejose tyrimų stotyse.

References / Nuorodos

[1] O. Lindquist and H. Rodhe, Atmospheric mercury - a review, Tellus 37B, 136–159 (1985),
https://doi.org/10.1111/j.1600-0889.1985.tb00062.x
[2] Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances, eds. W. Baeyens, R. Ebinghaus, and R. Vasiliev (Kluwer Academic Publishers, Netherlands, 1996),
https://doi.org/10.1007/978-94-009-1780-4
[3] T. Berg, O. Royset, and E. Steinnes, Trace elements in atmospheric precipitation at Norwegian background stations (1989-1990) measured by ICP-MS, Atmos. Environ. 28(21), 3519–3536 (1994),
https://doi.org/10.1016/1352-2310(94)90009-4
[4] Å. Iverfeldt, J. Munthe, C. Brosset, and J. Pacyna, Long-term changes in concentration and deposition of atmospheric mercury over Scandinavia, Water Air Soil Pollut. 80, 227–233 (1995),
https://doi.org/10.1007/BF01189672
[5] F. Slemr, W. Junkermann, R.W.H. Schmidt, and R. Sladkovic, Indication of change in global and regional trends of atmospheric mercury concentrations, Geophys. Res. Lett. 22, 2143–2146 (1995),
https://doi.org/10.1029/95GL01790
[6] F. Slemr and H.E. Scheel, Trends in atmospheric mercury concentrations at the summit of the Wank Mountain, Southern Germany, Atmos. Environ. 32, 845–853 (1998),
https://doi.org/10.1016/S1352-2310(97)00131-3
[7] W.H. Schroder and J. Munthe, Atmospheric mercury - an overview, Atmos. Environ. 32(5), 809–822 (1998),
https://doi.org/10.1016/S1352-2310(97)00293-8
[8] C.J. Watras, K.A. Morrison, R.J.M. Hudson, T.M. Frost, and T.K. Kratz, Decreasing mercury in Northern Wisconsin: Temporal patterns in bulk precipitation and a precipitation-dominated lake, Environ. Sci. Technol. 34(19), 4051–4057 (2000),
https://doi.org/10.1021/es000991g
[9] A. Urba, K. Kvietkus, and R. Marks, Gas-phase mercury in the atmosphere over the southern Baltic Sea coast, Sci. Total Environ. 259(1–3), 203–210 (2000),
https://doi.org/10.1016/S0048-9697(00)00583-0
[10] L.D. Hylander, Global mercury pollution and its expected decrease after a mercury trade ban, Water Air Soil Pollut. 125, 331–344 (2001),
https://doi.org/10.1023/A:1005231017807
[11] E. Pacyna, J. Pacyna, and N. Pirone, European emissions of atmospheric mercury from anthropogenic sources in 1995, Atmos. Environ. 35, 2987–2996 (2001),
https://doi.org/10.1016/S1352-2310(01)00102-9
[12] T. Stephens, Mercury in California rainwater traced to industrial emissions in Asia, UC Santa Cruz Currents 6, 1–2 (2003),
https://www1.ucsc.edu/currents/02-03/01-06/mercury.html
[13] X. Feng, S. Tang, L. Shang, H. Yan, J. Sommar, and O. Lindqvist, Total gaseous mercury in the atmosphere of Guiyang, PR China, Sci. Total Environ. 304, 61–72 (2003),
https://doi.org/10.1016/S0048-9697(02)00557-0
[14] I. Wängberg, J. Munthe, N. Pirrone, Å. Iverfeldt, E. Bahlman, P. Costa, R. Ebinghaus, X. Feng, R. Ferrara, K. Gårdfeldt, et al., Atmospheric mercury distribution in Northern Europe and in the Mediterranean region, Atmos. Environ. 35, 2019–2025 (2001),
https://doi.org/10.1016/S1352-2310(01)00105-4
[15] R. Ebinghaus, H. Kock, A. Coggins, T. Spain, S. Jennings, and Ch. Temme, Long-term measurements of atmospheric mercury at Mace Head, Irish west coast, between 1995 and 2001, Atmos. Environ. 36(34), 5267–5276 (2002),
https://doi.org/10.1016/S1352-2310(02)00691-X
[16] C. Temme, F. Slemr, R. Ebinghaus, and J.W. Einax, Distribution of mercury over Atlantic Ocean in 1996 and 1999-2001, Atmos. Environ. 37(14), 1889–1897 (2003),
https://doi.org/10.1016/S1352-2310(03)00069-4
[17] E.M. Prestbo and D.A. Gay, Wet deposition of mercury in the U.S. and Canada, 1996-2005: Results and analysis of the NADP mercury de­position network (MDN), Atmos. Environ. 43, 4223–4233 (2009),
https://doi.org/10.1016/j.atmosenv.2009.05.028
[18] J. Ovadnevaitė, K. Kvietkus, and A. Maršalka, 2002 summer fires in Lithuania: impact on the Vilnius city air quality and the inhabitant's health, Sci. Total Environ. 356(1–3), 11–21 (2006),
https://doi.org/10.1016/j.scitotenv.2005.04.013
[19] J.M. Caffrey, W.M. Landing, S.D. Nolek, K.J. Gos­nell, S.S. Bagui, and S.C. Bagui, Atmospheric deposition of mercury and major ions to the Pensacola (Florida) watershed: spatial, seasonal, and inter-annual variability, Atmos. Chem. Phys. 10, 5425–5434 (2010),
https://doi.org/10.5194/acp-10-5425-2010
[20] K. Kvietkus, J. Šakalys, and D. Valiulis. Trends of atmospheric heavy metal deposition in Lithuania, Lith. J. Phys. 51(4), 359–369 (2011),
http://dx.doi.org/10.3952/lithjphys.51413
[21] J.W. O'Dell, B.B. Potter, L.B. Lobring, and T.D. Martin, Method 245.1, Revision 3.0: Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry (United States Environment Protection Agency, 1994),
[PDF]
[22] K. Kvietkus J. Šakalys, and A. Urba, Optical Absorption Equipment for Mercury Concentration Measurement, Patent of Lithuania, No. 3138 (1993)
[23] A. Urba, K. Kvietkus, J. Šakalys, Z. Xiao, and O. Lindq­vist, A new sensitive and portable mercury vapor analyzer Gardis-1A, Water Air Soil Pollut. 80, 1209–1216 (1995),
https://doi.org/10.1007/BF01189794
[24] K. Kvietkus, Z. Xiao, and O. Lindqvist, Denuder-based techniques for sampling, separating and analysis of gaseous and particulate mercury in the air, Water Air Soil Pollut. 80, 1305–1309 (1995),
https://doi.org/10.1007/BF01189784
[25] D. Čeburnis, J. Šakalys, K. Armolaitis, D. Va­liu­lis, and K. Kvietkus, In-stack emissions of heavy metals estimated by moss biomonitoring meth­od, Atmos. Environ. 36(9), 6001–6014 (2002),
https://doi.org/10.1016/S1352-2310(01)00577-5
[26] J. Šakalys, K. Kvietkus, J. Sucharova, I. Su­cha­ra, and D. Valiulis, Changes in total concentrations and assessed background concentrations of heavy metals in moss in Lithuania and the Czech Republic between 1995 and 2005, Chemosphere 76(1), 91–97 (2009),
https://doi.org/10.1016/j.chemosphere.2009.02.009
[27] R. Ebinghaus, S.G. Jennings, W.H. Schroeder, T. Berg, T. Donaghy, J. Guentze, C. Kenny, H.H. Kock, K. Kvietkus, W. Landing, et al., International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland, Atmos. Environ. 33(18), 3062–3073 (1999),
https://doi.org/10.1016/S1352-2310(98)00119-8
[28] J. Munthe, I. Wängberg, N. Pirrone, Å. Iverfeldt, R. Ferrara, R. Ebinghaus, X. Feng, K. Gårdfeldt, G. Keeler, E. Lanzillotta, et al., Intercomparison of methods for sampling and analysis of atmospheric mercury species, Atmos. Environ. 35(17), 3007–3017 (2001),
https://doi.org/10.1016/S1352-2310(01)00104-2
[29] T.H. Kuo, C.F. Chang, A. Urba, and K. Kvietkus, Atmospheric gaseous mercury in Northern Taiwan, Sci. Total Environ. 368(1), 10–18 (2006),
https://doi.org/10.1016/j.scitotenv.2005.10.017
[30] A. Urba, Investigations of Mercury Fluxes in the Environment, PhD Thesis (Institute of Physics, Vilnius, 1999)
[31] A. Urba, K. Kvietkus, J. Šakalys, J. Didžbalis, and D. Valiulis, Method and Device for Detection of Elemental Gaseous Mercury in Air or in Other Gases, European Patent, EP 3 032 254 B1 (2016),
[PDF]
[32] A. Urba, D. Valiulis, J. Šarlauskas, K. Kvietkus, J. Šakalys, and A. Sielskis, A pilot study of different materials applied for active sampling of gaseous oxidized mercury in the atmospheric air, Atmos. Pollut. Res. 8, 791–799 (2017),
https://doi.org/10.1016/j.apr.2017.01.012
[33] L. Davulienė, J. Šakalys, V. Dudoitis, A. Reklaitė, and V. Ulevičius, Long-term black carbon variation in the South-Eastern Baltic Region in 2008-2015, Atmos. Pollut. Res. 10(1), 123–133 (2018),
https://doi.org/10.1016/j.apr.2018.06.013
[34] B.S. Davis and G.F. Birch, Spatial distribution of bulk atmospheric deposition of heavy metals in Metropolitan Sydney, Australia, Water Air Soil Pollut. 214, 147–162 (2011),
https://doi.org/10.1007/s11270-010-0411-3
[35] P.S. Weiss-Penzias, D.A. Gay, M.E. Brigham, M.T. Parsons, M.S. Gustin, and A. ter Schure, Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada, Sci. Total Environ. 568, 546–556 (2016),
https://doi.org/10.1016/j.scitotenv.2016.01.061
[36] E.-G. Brunke, C. Walters, T. Mkololo, L. Martin, C. Labuschagne, B. Silwana, F. Slemr, A. Weigelt, R. Ebinghaus, and V. Somerset, Mercury in the atmosphere and in rainwater at Cape Point, South Africa, Atmos. Environ. 125, 24–32 (2016),
https://doi.org/10.1016/j.atmosenv.2015.10.059
[37] A. Dommergue, P. Martinerie, J. Courteaud, E. Witrant, and D.M. Etheridge, A new reconstruction of atmospheric gaseous elemental mercury trend over 60 years from Greenland firn records, Atmos. Environ. 136, 156–164 (2016),
https://doi.org/10.1016/j.atmosenv.2016.04.012
[38] J.M. Pacyna, O. Travnikov, F. De Simone, I.M. Kyrre Sundseth, E.G. Pacyna, F. Steenhuisen, N. Pirrone, J. Munthe, and K. Kindbom, Current and future levels of mercury atmospheric pollution on a global scale, Atmos. Chem. Phys. 16, 12495–12511 (2016),
https://doi.org/10.5194/acp-16-12495-2016