Jonas Šakalys, Kęstutis Kvietkus, Inga Garbarienė, and
Andriejus Urba
Received 12 July 2018; revised 4 October 2018; accepted 15 October
2018
laikių matavimų rezultatai Aukštaitijos ir
Žemaitijos integruoto monitoringo stotyse (IMS). Lietaus
kritulių bandiniai buvo imami kiekvieną savaitę 2007–2017
metais. Gyvsidabrio koncentracijos buvo matuojamos mūsų
institucijoje sukurtu atominiu absorbciniu gyvsidabrio
analizatoriumi „Gardis“. Prietaisas išbandytas įvairiose
interkalibracijose ir yra pripažintas tarptautiniu mastu. Darbe
pateiktos vidutinės mėnesinės ir metinės gyvsidabrio
koncentracijos, jų kitimas dešimties metų laikotarpiu ir
nusėdimo kiekių į žemės paviršių analizė. Vakarinėje Lietuvos
dalyje vidutinės mėnesinės gyvsidabrio koncentracijos
krituliuose pamažu didėjo iki 2011 m., tačiau nuo 2012 m.
buvo pastebėta gyvsidabrio koncentracijos mažėjimo tendencija.
Rytinėje Lietuvos dalyje stebima priešinga gyvsidabrio
koncentracijos svyravimo krituliuose eiga (iki 2011 m. ‒ mažėja,
nuo 2012 m. ‒ didėja). Tuo pat metu nustatyta bendra abiems
stotims žemės paviršiaus apkrovos Hg mažėjimo tendencija, ypač
ryški Žemaitijos IMS. Anksčiau aprašytus reiškinius būtų galima
paaiškinti didele oro masių pernašos trajektorijų kaita ir
kritulių nereguliarumu abiejose tyrimų stotyse.
References
/
Nuorodos
[1] O. Lindquist and H. Rodhe, Atmospheric mercury - a review,
Tellus
37B, 136–159 (1985),
https://doi.org/10.1111/j.1600-0889.1985.tb00062.x
[2]
Global and Regional Mercury Cycles: Sources, Fluxes and
Mass Balances, eds. W. Baeyens, R. Ebinghaus, and R.
Vasiliev (Kluwer Academic Publishers, Netherlands, 1996),
https://doi.org/10.1007/978-94-009-1780-4
[3] T. Berg, O. Royset, and E. Steinnes, Trace elements in
atmospheric precipitation at Norwegian background stations
(1989-1990) measured by ICP-MS, Atmos. Environ.
28(21),
3519–3536 (1994),
https://doi.org/10.1016/1352-2310(94)90009-4
[4] Å. Iverfeldt, J. Munthe, C. Brosset, and J. Pacyna,
Long-term changes in concentration and deposition of atmospheric
mercury over Scandinavia, Water Air Soil Pollut.
80,
227–233 (1995),
https://doi.org/10.1007/BF01189672
[5] F. Slemr, W. Junkermann, R.W.H. Schmidt, and R. Sladkovic,
Indication of change in global and regional trends of
atmospheric mercury concentrations, Geophys. Res. Lett.
22,
2143–2146 (1995),
https://doi.org/10.1029/95GL01790
[6] F. Slemr and H.E. Scheel, Trends in atmospheric mercury
concentrations at the summit of the Wank Mountain, Southern
Germany, Atmos. Environ.
32, 845–853 (1998),
https://doi.org/10.1016/S1352-2310(97)00131-3
[7] W.H. Schroder and J. Munthe, Atmospheric mercury - an
overview, Atmos. Environ.
32(5), 809–822 (1998),
https://doi.org/10.1016/S1352-2310(97)00293-8
[8] C.J. Watras, K.A. Morrison, R.J.M. Hudson, T.M. Frost, and
T.K. Kratz, Decreasing mercury in Northern Wisconsin: Temporal
patterns in bulk precipitation and a precipitation-dominated
lake, Environ. Sci. Technol.
34(19), 4051–4057 (2000),
https://doi.org/10.1021/es000991g
[9] A. Urba, K. Kvietkus, and R. Marks, Gas-phase mercury in the
atmosphere over the southern Baltic Sea coast, Sci. Total
Environ.
259(1–3), 203–210 (2000),
https://doi.org/10.1016/S0048-9697(00)00583-0
[10] L.D. Hylander, Global mercury pollution and its expected
decrease after a mercury trade ban, Water Air Soil Pollut.
125,
331–344 (2001),
https://doi.org/10.1023/A:1005231017807
[11] E. Pacyna, J. Pacyna, and N. Pirone, European emissions of
atmospheric mercury from anthropogenic sources in 1995, Atmos.
Environ.
35, 2987–2996 (2001),
https://doi.org/10.1016/S1352-2310(01)00102-9
[12] T. Stephens, Mercury in California rainwater traced to
industrial emissions in Asia, UC Santa Cruz Currents
6,
1–2 (2003),
https://www1.ucsc.edu/currents/02-03/01-06/mercury.html
[13] X. Feng, S. Tang, L. Shang, H. Yan, J. Sommar, and O.
Lindqvist, Total gaseous mercury in the atmosphere of Guiyang,
PR China, Sci. Total Environ.
304, 61–72 (2003),
https://doi.org/10.1016/S0048-9697(02)00557-0
[14] I. Wängberg, J. Munthe, N. Pirrone, Å. Iverfeldt, E.
Bahlman, P. Costa, R. Ebinghaus, X. Feng, R. Ferrara, K.
Gårdfeldt, et al., Atmospheric mercury distribution in Northern
Europe and in the Mediterranean region, Atmos. Environ.
35,
2019–2025 (2001),
https://doi.org/10.1016/S1352-2310(01)00105-4
[15] R. Ebinghaus, H. Kock, A. Coggins, T. Spain, S. Jennings,
and Ch. Temme, Long-term measurements of atmospheric mercury at
Mace Head, Irish west coast, between 1995 and 2001, Atmos.
Environ.
36(34), 5267–5276 (2002),
https://doi.org/10.1016/S1352-2310(02)00691-X
[16] C. Temme, F. Slemr, R. Ebinghaus, and J.W. Einax,
Distribution of mercury over Atlantic Ocean in 1996 and
1999-2001, Atmos. Environ.
37(14), 1889–1897 (2003),
https://doi.org/10.1016/S1352-2310(03)00069-4
[17] E.M. Prestbo and D.A. Gay, Wet deposition of mercury in the
U.S. and Canada, 1996-2005: Results and analysis of the NADP
mercury deposition network (MDN), Atmos. Environ.
43,
4223–4233 (2009),
https://doi.org/10.1016/j.atmosenv.2009.05.028
[18] J. Ovadnevaitė, K. Kvietkus, and A. Maršalka, 2002 summer
fires in Lithuania: impact on the Vilnius city air quality and
the inhabitant's health, Sci. Total Environ.
356(1–3),
11–21 (2006),
https://doi.org/10.1016/j.scitotenv.2005.04.013
[19] J.M. Caffrey, W.M. Landing, S.D. Nolek, K.J. Gosnell, S.S.
Bagui, and S.C. Bagui, Atmospheric deposition of mercury and
major ions to the Pensacola (Florida) watershed: spatial,
seasonal, and inter-annual variability, Atmos. Chem. Phys.
10,
5425–5434 (2010),
https://doi.org/10.5194/acp-10-5425-2010
[20] K. Kvietkus, J. Šakalys, and D. Valiulis. Trends of
atmospheric heavy metal deposition in Lithuania, Lith. J. Phys.
51(4), 359–369 (2011),
http://dx.doi.org/10.3952/lithjphys.51413
[21] J.W. O'Dell, B.B. Potter, L.B. Lobring, and T.D. Martin,
Method
245.1, Revision 3.0: Determination of Mercury in Water by Cold
Vapor Atomic Absorption Spectrometry (United States
Environment Protection Agency, 1994),
[PDF]
[22] K. Kvietkus J. Šakalys, and A. Urba, Optical Absorption
Equipment for Mercury Concentration Measurement, Patent of
Lithuania, No. 3138 (1993)
[23] A. Urba, K. Kvietkus, J. Šakalys, Z. Xiao, and O.
Lindqvist, A new sensitive and portable mercury vapor analyzer
Gardis-1A, Water Air Soil Pollut.
80, 1209–1216 (1995),
https://doi.org/10.1007/BF01189794
[24] K. Kvietkus, Z. Xiao, and O. Lindqvist, Denuder-based
techniques for sampling, separating and analysis of gaseous and
particulate mercury in the air, Water Air Soil Pollut.
80,
1305–1309 (1995),
https://doi.org/10.1007/BF01189784
[25] D. Čeburnis, J. Šakalys, K. Armolaitis, D. Valiulis, and
K. Kvietkus, In-stack emissions of heavy metals estimated by
moss biomonitoring method, Atmos. Environ.
36(9),
6001–6014 (2002),
https://doi.org/10.1016/S1352-2310(01)00577-5
[26] J. Šakalys, K. Kvietkus, J. Sucharova, I. Suchara, and D.
Valiulis, Changes in total concentrations and assessed
background concentrations of heavy metals in moss in Lithuania
and the Czech Republic between 1995 and 2005, Chemosphere
76(1),
91–97 (2009),
https://doi.org/10.1016/j.chemosphere.2009.02.009
[27] R. Ebinghaus, S.G. Jennings, W.H. Schroeder, T. Berg, T.
Donaghy, J. Guentze, C. Kenny, H.H. Kock, K. Kvietkus, W.
Landing, et al., International field intercomparison
measurements of atmospheric mercury species at Mace Head,
Ireland, Atmos. Environ.
33(18), 3062–3073 (1999),
https://doi.org/10.1016/S1352-2310(98)00119-8
[28] J. Munthe, I. Wängberg, N. Pirrone, Å. Iverfeldt, R.
Ferrara, R. Ebinghaus, X. Feng, K. Gårdfeldt, G. Keeler, E.
Lanzillotta, et al., Intercomparison of methods for sampling and
analysis of atmospheric mercury species, Atmos. Environ.
35(17),
3007–3017 (2001),
https://doi.org/10.1016/S1352-2310(01)00104-2
[29] T.H. Kuo, C.F. Chang, A. Urba, and K. Kvietkus, Atmospheric
gaseous mercury in Northern Taiwan, Sci. Total Environ.
368(1),
10–18 (2006),
https://doi.org/10.1016/j.scitotenv.2005.10.017
[30] A. Urba,
Investigations of Mercury Fluxes in the
Environment, PhD Thesis (Institute of Physics, Vilnius,
1999)
[31] A. Urba, K. Kvietkus, J. Šakalys, J. Didžbalis, and D.
Valiulis,
Method and Device for Detection of Elemental
Gaseous Mercury in Air or in Other Gases, European Patent,
EP 3 032 254 B1 (2016),
[PDF]
[32] A. Urba, D. Valiulis, J. Šarlauskas, K. Kvietkus, J.
Šakalys, and A. Sielskis, A pilot study of different materials
applied for active sampling of gaseous oxidized mercury in the
atmospheric air, Atmos. Pollut. Res.
8, 791–799 (2017),
https://doi.org/10.1016/j.apr.2017.01.012
[33] L. Davulienė, J. Šakalys, V. Dudoitis, A. Reklaitė, and V.
Ulevičius, Long-term black carbon variation in the South-Eastern
Baltic Region in 2008-2015, Atmos. Pollut. Res.
10(1),
123–133 (2018),
https://doi.org/10.1016/j.apr.2018.06.013
[34] B.S. Davis and G.F. Birch, Spatial distribution of bulk
atmospheric deposition of heavy metals in Metropolitan Sydney,
Australia, Water Air Soil Pollut.
214, 147–162 (2011),
https://doi.org/10.1007/s11270-010-0411-3
[35] P.S. Weiss-Penzias, D.A. Gay, M.E. Brigham, M.T. Parsons,
M.S. Gustin, and A. ter Schure, Trends in mercury wet deposition
and mercury air concentrations across the U.S. and Canada, Sci.
Total Environ.
568, 546–556 (2016),
https://doi.org/10.1016/j.scitotenv.2016.01.061
[36] E.-G. Brunke, C. Walters, T. Mkololo, L. Martin, C.
Labuschagne, B. Silwana, F. Slemr, A. Weigelt, R. Ebinghaus, and
V. Somerset, Mercury in the atmosphere and in rainwater at Cape
Point, South Africa, Atmos. Environ.
125, 24–32 (2016),
https://doi.org/10.1016/j.atmosenv.2015.10.059
[37] A. Dommergue, P. Martinerie, J. Courteaud, E. Witrant, and
D.M. Etheridge, A new reconstruction of atmospheric gaseous
elemental mercury trend over 60 years from Greenland firn
records, Atmos. Environ.
136, 156–164 (2016),
https://doi.org/10.1016/j.atmosenv.2016.04.012
[38] J.M. Pacyna, O. Travnikov, F. De Simone, I.M. Kyrre
Sundseth, E.G. Pacyna, F. Steenhuisen, N. Pirrone, J. Munthe,
and K. Kindbom, Current and future levels of mercury atmospheric
pollution on a global scale, Atmos. Chem. Phys.
16,
12495–12511 (2016),
https://doi.org/10.5194/acp-16-12495-2016