[PDF] https://doi.org/10.3952/physics.v59i2.4009

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 57–69 (2019)
 


THE EQUIVALENT CIRCUIT IMITATING WAVE SCATTERING BY ARRAYS OF SPLIT-RING RESONATORS
Algirdas Matulis, Gediminas Šlekas, Dalius Seliuta, and Žilvinas Kancleris
  Semiconductor Physics Institute, Center for Physical Sciences and Technology, Saulėtekio 3, 10222 Vilnius, Lithuania
E-mail: algirdas.matulis@ftmc.lt

Received 7 March 2019; accepted 2 April 2019

The scattering of waves by a periodic chain of series resonant LC circuits in a two-dimensional lattice of lumped elements is considered, that imitates the scattering of electromagnetic waves by a periodic lattice of split-ring resonators. Using the translation symmetry of this chain we transformed the scattering problem into the problem of wave propagation along the strip with a single LC circuit. This problem was solved analytically presenting the transmittance as a sum of partial transmittances, corresponding to the frequency mini-bands of the strip. It is shown that the transmittance as a function of the incident wave frequency demonstrates two types of resonances with different resonant frequency dependence on the distance between neighbouring LC circuits.
Keywords: wave scattering, split-ring resonator, 2D model of lumped elements

EKVIVALENTINĖ GRANDINĖ, IMITUOJANTI BANGOS SKLAIDĄ ŽIEDINIŲ REZONATORIŲ MASYVU
Algirdas Matulis, Gediminas Šlekas, Dalius Seliuta, Žilvinas Kancleris

Fizinių ir technologijų mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva
 
Išanalizuota bangų sklaida dvimačiame radiotechniniame sutelktų parametrų modelyje su išilgai tiesės periodiškai išdėstytais nuosekliais rezonansiniais LC kontūrais. Tai imituoja elektromagnetinės bangos sklaidą dvimate periodine perpjautų žiedinių rezonatorių gardele. Panaudojus tiriamo darinio transliacinę simetriją šis difrakcinis uždavinys transformuotas į bangos plitimo juostele uždavinį ir jos sklaidą vieninteliu LC kontūru. Surastas sprendinys išreiškiant bangos pralaidumą ir atspindį dalinių pralaidumų bei atspindžių sumomis, atitinkančiomis juostelės minijuostas. Parodoma, kad tokioje sklaidoje stebimi dviejų tipų rezonansai su skirtingais rezonansiniais dažniais. Vienas jų yra susijęs su rezonansiniu LC kontūro dažniu, silpnai priklausančiu nuo nuotolio tarp gretimų LC kontūrų (plazmoninių modų analogas minėtame perpjautų žiedelių darinyje), o kito tipo svyravimų rezonansinis dažnis priklauso nuo nuotolio tarp gretimų LC kontūrų ir gali būti siejamas su gardelės modomis tuose periodiniuose dariniuose.

References / Nuorodos

[1] S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, and C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz, Science 306(5700), 1351–1353 (2004),
https://doi.org/10.1126/science.1105371
[2] C.M. Soukoulis, S. Linden, and M. Wegener, Physics. Negative refractive index at optical wavelengths, Science 315(5808), 47–49 (2007),
https://doi.org/10.1126/science.1136481
[3] P. Alitalo and S. Tretyakov, Electromagnetic cloaking with metamaterials, Mater. Today 12(3), 22–29 (2009),
https://doi.org/10.1016/S1369-7021(09)70072-0
[4] S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Negative refractive index in chiral metamaterials, Phys. Rev. Lett. 102(2), 023901-1–4 (2009),
https://doi.org/10.1103/PhysRevLett.102.023901
[5] C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, Resonances of split-ring resonator metamaterials in the near infrared, Appl. Phys. B 84, 219–227 (2006),
https://doi.org/10.1007/s00340-006-2205-2
[6] J. Zhou, T. Koschny, and C.M. Soukoulis, Magnetic and electric excitations in split ring resonators, Opt. Express 15(26), 17881–17890 (2007),
https://doi.org/10.1364/OE.15.017881
[7] A. Bitzer, J. Wallauer, H. Helm, H. Merbold, T. Feurer, and M. Walther, Lattice modes mediate radiative coupling in metamaterial arrays, Opt. Express 17(24), 22108–22113 (2009),
https://doi.org/10.1364/OE.17.022108
[8] J. Wallauer, A. Bitzer, S. Waselikowski, and M. Walther, Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study, Opt. Express 19(18), 17283–17292 (2011),
https://doi.org/10.1364/OE.19.017283
[9] R.W. Wood, Anomalous diffraction grating, Phys. Rev. 48(12), 928–936 (1935),
https://doi.org/10.1103/PhysRev.48.928
[10] N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation, Opt. Express 18(7), 6545–6554 (2010),
https://doi.org/10.1364/OE.18.006545
[11] I. Sersic, M. Frimmer, E. Verhagen, and A.F. Koenderink, Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays, Phys. Rev. Lett. 103(21), 213902-1–4 (2009),
https://doi.org/10.1103/PhysRevLett.103.213902
[12] N. Xu, R. Singh, and W. Zhang, High-Q lattice mode matched structural resonances in terahertz metasurfaces, Appl. Phys. Lett. 109(2), 021108 (2016),
https://doi.org/10.1063/1.4958730
[13] D. Seliuta, G. Šlekas, A. Vaitkūnas, Ž. Kancleris, and G. Valušis, Enhancement of higher-order plasmonic modes in a dense array of split-ring resonators, Opt. Express 25(21), 25113–25124 (2017),
https://doi.org/10.1364/OE.25.025113
[14] R. Singh, C. Rockstuhl, and W. Zhang, Strong influence of packing density in terahertz metamaterials, Appl. Phys. Lett. 97(24), 241108-1–2 (2010),
https://doi.org/10.1063/1.3525169
[15] M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring, J. Appl. Phys. 95, 3778–3784 (2004),
https://doi.org/10.1063/1.1652251
[16] A. Elhawil, J. Stiens, C. De Tandt, W. Ranson, and R. Vounckx, An equivalent circuit model of single circular open-ring resonators, IEEE J. Sel. Top. Quantum Electron. 16(2), 380–385 (2010),
https://doi.org/10.1109/JSTQE.2009.2028306
[17] T. Zhang, W. Xiong, B. Zhao, J. Shen, Ch. Qiu, and X. Luo, Equivalent circuit analysis of 'U'-shaped split ring resonators, J. Mod. Opt. 62(11), 901–907 (2015),
https://doi.org/10.1080/09500340.2015.1015633
[18] N. Xu, R. Singh, and W. Zhang, Collective coherence in nearest neighbor coupled metamaterials: A metasurface ruler equation, J. Appl. Phys. 118, 163102-1–6 (2015),
https://doi.org/10.1063/1.4934256
[19] A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000), Ch. 3,
https://us.artechhouse.com/Computational-Electrodynamics-Third-Edition-P1929.aspx
[20] A.E. Miroshnichenko, Fano resonances in nanoscale structures, Rev. Mod. Phys. 82, 2257–2298 (2010),
https://doi.org/10.1103/RevModPhys.82.2257