[PDF] https://doi.org/10.3952/physics.v59i2.4011

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 79–93 (2019)
 


OPTICAL ABSORPTION BY INCOHERENT AND COHERENT ENSEMBLES OF SPIN EXCITATIONS IN AN UNPOLARISED QUANTUM HALL SYSTEM
 
Sergey M. Dickmann
  Institute of Solid State Physics of RAS, Chernogolovka, 142432, Moscow District, Russia
Email: dickmann@issp.ac.ru

Received 25 October 2018; revised 2 April 2019; accepted 21 June 2019

In connection with recent studies of extremely long-living spin-cyclotron excitations that are actually magnetoexcitons in the quantum Hall electron gas, we discuss the contribution to light absorption related to the presence of a magnetoexcitonic ensemble in this purely electronic system. The distribution of magnetoexcitons in an ‘incoherent’ phase, as well as absorption of light, is determined by a smooth random potential inevitably present in a quantum well. Since weakly interacting excitations have to obey the Bose–Einstein statistics, one may expect the appearance of a coherent phase where all magnetoexcitons are in the same state. The absorption of light is still determined by disorder in the system, but it turns out to be about an order of magnitude higher. A comparative analysis is made of both incoherent and coherent cases. The condition for coherent–incoherent phase transition is discussed. It is expected to be strongly related to long-distance inter-excitonic correlations. The latter are accounted in terms of virial correction (i.e. depending on magnetoexciton concentration) for the single magnetoexciton energy found within the approximation of a slightly non-ideal gas.
Keywords: two-dimensional electron gas, quantum well, magnetic field, optical absorption, resonant Rayleigh reflection, magnetoexciton, cyclotron spin-flip excitation, Bose–Einstein condensation
PACS: 73.21.Fg, 73.43.Lp, 78.67.De

KOHERENTINIŲ IR NEKOHERENTINIŲ SUKINIO SUŽADINIMŲ ANSAMBLIŲ NEPOLIARIZUOTOJE KVANTINĖJE HOLO SISTEMOJE OPTINĖ SUGERTIS
Sergey M. Dickmann

Rusijos mokslų akademijos Kietojo kūno fizikos institutas, Černogolovka, Rusija
 

References / Nuorodos

[1] C. Kallin and B.I. Halperin, Excitations from a filled Landau level in the two-dimensional electron gas, Phys. Rev. B 30, 5655 (1984),
https://doi.org/10.1103/PhysRevB.30.5655
[2] S. Dickmann and I.V. Kukushkin, Zero-momentum cyclotron spin-flip mode in a spin-unpolarized quantum Hall system, Phys. Rev. B 71, 241310(R) (2005),
https://doi.org/10.1103/PhysRevB.71.241310
[3] L.V. Kulik, I.V. Kukushkin, S. Dickmann, V.E. Kirpichev, A.B. Van'kov, A.L. Parakhonsky, J.H. Smet, K. von Klitzing, and W. Wegscheider, Cyclotron spin-flip mode as the lowest-energy excitation of unpolarized integer quantum Hall states, Phys. Rev. B 72, 073304 (2005),
https://doi.org/10.1103/PhysRevB.72.073304
[4] S. Dickmann, Relaxation of the cyclotron spin-flip excitation in a spin-unpolarized quantum Hall system, Lith. J. Phys. 52, 96 (2012),
https://doi.org/10.3952/physics.v52i2.2354
[5] S. Dickmann, Extremely slow spin relaxation in a spin-unpolarized quantum Hall system, Phys. Rev. Lett. 110, 166801 (2013),
https://doi.org/10.1103/PhysRevLett.110.166801
[6] L.V. Kulik, A.V. Gorbunov, A.S. Zhuravlev, V.B. Timofeev, S. Dickmann, and I.V. Kukushkin, Super-long life time for 2D cyclotron spin-flip excitons, Sci. Rep. 5, 10354 (2015),
https://doi.org/10.1038/srep10354
[7] A. Pinczuk, B.S. Dennis, D. Heiman, C. Kallin, L. Brey, C. Tejedor, S. Schmitt-Rink, L.N. Pfeiffer, and K.W. West, Spectroscopic measurement of large exchange enhancement of a spin-polarized 2D electron gas, Phys. Rev. Lett. 68, 3623 (1992),
https://doi.org/10.1103/PhysRevLett.68.3623
[8] T. Ando, A.B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54, 437 (1982),
https://doi.org/10.1103/RevModPhys.54.437
[9] L.P. Gor'kov and I.E. Dzyaloshinskii, Contribution to the theory of the Mott exciton in a strong magnetic field, Sov. Phys. JETP 26, 449 (1968),
http://www.jetp.ac.ru/cgi-bin/e/index/e/26/2/p449?a=list
[10] A.B. Dzyubenko and Yu.E. Lozovik, Exact solutions and Bogoliubov transformations for zero-dimensional electron-hole systems, Sov. Phys. Solid State 25, 874 (1983)
[11] A.B. Dzyubenko and Yu.E. Lozovik, Quasi-2D electron-hole pair condensate in strong magnetic fields, Sov. Phys. Solid State 26, 938 (1984)
[12] A.S. Zhuravlev, S. Dickmann, L.V. Kulik, and I.V. Kukushkin, Slow spin relaxation in a quantum Hall ferromagnet state, Phys. Rev. B 89, 161301(R) (2014),
https://doi.org/10.1103/PhysRevB.89.161301
[13] I.V. Lerner and Yu.E. Lozovik, Mott exciton in a quasi-two-dimensional semiconductor in a strong magnetic field, Sov. Phys. JETP 51, 588 (1980),
http://www.jetp.ac.ru/cgi-bin/e/index/e/51/3/p588?a=list
[14] S.V. Iordanski and Y. Levinson, Electron-phonon scattering in a two-dimensional electron gas in a very strong magnetic field near the percolation threshold, Phys. Rev. B 53, 7308 (1996),
https://doi.org/10.1103/PhysRevB.53.7308
[15] A.B. Dzyubenko and Yu.E. Lozovik, Symmetry of Hamiltonians of quantum two-component systems: condensate of composite particles as an exact eigenstate, J. Phys. A 24, 415 (1991),
https://doi.org/10.1088/0305-4470/24/2/015
[16] R.H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93, 99 (1954),
https://doi.org/10.1103/PhysRev.93.99
[17] S. Dickmann and V.M. Zhilin, Double-exciton component of the cyclotron spin-flip mode in a quantum Hall ferromagnet, Phys. Rev. B 78, 115302 (2008),
https://doi.org/10.1103/PhysRevB.78.115302