[PDF] https://doi.org/10.3952/physics.v59i2.4012

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 94–103 (2019)
 


PECULIARITIES OF CHARGE CARRIER RELAXATION IN GRAIN BOUNDARY OF GADOLINIUM-DOPED CERIA CERAMICS
 
Saulius Kazlauskasa, Edvardas Kazakevičiusa, Artūras Žalgab, Saulius Daugėlaa, and Algimantas Kežionisa
 aInstitute of Applied Electrodynamics and Telecommunications, Saulėtekio 3, 10222 Vilnius, Lithuania
bDepartment of Applied Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24,  03225 Vilnius, Lithuania
Email: saulius.kazlauskas@ff.vu.lt

Received 25 February 2019; revised 28 March 2019; accepted 2 April 2019

Two different gadolinium-doped ceria ceramics are prepared from two different powders, one commercially available synthesised by solid state reaction and another produced by tartaric acid assisted sol–gel synthesis. The specimens have a different microstructure, while the XRD patterns of powders showed a pure cubic fluorite structure without any impurity phase. The electrical properties are studied at frequencies up to 10 GHz by combining broadband 2-electrode and 4-electrode impedance spectroscopy methods. Primary electrical measurements showed that the values of grain conductivity and its activation energies for both ceramics were nearly the same. However, due to different contributions of the grain boundary mediums, total conductivities and their activation energies are found to be considerably different. The advantage of the 4-electrode method allowed us to measure the pure electrical response of grain boundaries, bypassing any interferences caused by interfacial impedance. By using these data, the temperature behaviour of distribution of relaxation times in the grain boundary is studied. A broadening of this distribution with increasing temperature is found for both specimens, contrary to a previously observed phenomenon in the grain of oxygen ion conductive ceramics and single crystals. It is shown that, supposing individual relaxation times behave according to the Arrhenius law, both activation energy and pre-exponential factor must be distributed.
Keywords: gadolinium-doped ceria, ionic conductivity, distribution of relaxation times, grain boundary, sintering
PACS: 81.05.Je, 66.30.Dn

KRŪVININKŲ RELAKSACIJOS YPATYBĖS TARPKRISTALITINĖJE GADOLINIU LEGIRUOTŲ CERIO OKSIDO KERAMIKŲ TERPĖJE
Saulius Kazlauskasa, Edvardas Kazakevičiusa, Artūras Žalgab, Saulius Daugėlaa, Algimantas Kežionisa

aVilniaus universiteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva
bVilniaus universiteto Chemijos ir geologijos fakultetas, Vilnius, Lietuva
 
Dviejų rūšių gadoliniu legiruoto cerio oksido keramikos buvo pagamintos iš skirtingų miltelių: vieni iš jų komerciniai, o kiti buvo sintezuojami zolių-gelių metodu, naudojant tartarinę rūgštį. Sukepintos keramikos turėjo skirtingą mikrostruktūrą, tačiau tyrimai rentgeno spindulių difrakcijos metodu rodė kubinio fluorito struktūrą be jokių priemaišinių fazių. Šių medžiagų elektrinės savybės buvo tiriamos iki 10 GHz dažniuose naudojant 2-jų ir 4-ių elektrodų pilnutinės varžos spektroskopijos metodus.
Pirminiai elektrinių savybių tyrimo rezultatai parodė, kad keramikų kristalitų laidumai ir jų aktyvacijos energijos yra identiški. Tačiau dėl skirtingų tarpkristalitinių terpių savybių bendrieji laidumai ir jų aktyvacijos energijos skyrėsi. Keturių elektrodų pilnutinės varžos spektroskopijos metodu buvo išmatuoti keramikų tarpkristalitinių terpių elektriniai atsakai. Pasitelkus šiuos duomenis buvo tiriamos krūvininkų relaksacijos trukmių pasiskirstymo keramikų tarpkristalitinėse terpėse temperatūrinės priklausomybės. Nustatyta, kad kylant temperatūrai šis pasiskirstymas didėja, priešingai, nei anksčiau stebėtame analogiškame reiškinyje joninio laidumo keramikų kristalituose ir monokristaluose. Taip pat parodyta, kad manant, jog atskiros relaksacijų trukmės kinta pagal Arenijaus dėsnį, tiek aktyvacijos energija, tiek priešeksponentinis faktorius turi būti pasiskirstę.

References / Nuorodos

[1] S. Zha, C. Xia, and G. Meng, Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells, J. Power Sources 115, 44–48 (2003),
https://doi.org/10.1016/S0378-7753(02)00625-0
[2] G. Accardo, D. Frattini, H.C. Ham, J.H. Han, and S.P. Yoon, Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion, Ceram. Int. 44, 3800–3809 (2018),
https://doi.org/10.1016/j.ceramint.2017.11.165
[3] G. Dell'Agli, L. Spiridigliozzi, M. Pansini, G. Accardo, S.P. Yoon, and D. Frattini, Effect of the carbonate environment on morphology and sintering behaviour of variously co-doped (Ca, Sr, Er, Pr) Samarium-doped Ceria in co-precipitation/hydrothermal synthesis, Ceram. Int. 44, 17935–17944 (2018),
https://doi.org/10.1016/j.ceramint.2018.06.269
[4] S.I. Ahmad, T. Mohammed, A. Bahafi, and M.B. Suresh, Effect of Mg doping and sintering temperature on structural and morphological properties of samarium-doped ceria for IT-SOFC electrolyte, Appl. Nanosci. 7, 243–252 (2017),
https://doi.org/10.1007/s13204-017-0567-x
[5] K.R. Lee, J.H. Lee, and H.I. Yoo, Grain size effect on the electrical properties of nanocrystalline ceria, J. Eur. Ceram. Soc. 34, 2363–2370 (2014),
https://doi.org/10.1016/j.jeurceramsoc.2014.02.035
[6] T.H. Santos, J.P.F. Grilo, F.J.A. Loureiro, D.P. Fagg, F.C. Fonseca, and D.A. Macedo, Structure, densification and electrical properties of Gd3+ and Cu2+ co-doped ceria solid electrolytes for SOFC applications: Effects of Gd2O3 content, Ceram. Int. 44, 2745–2751 (2018),
https://doi.org/10.1016/j.ceramint.2017.11.009
[7] S. Tariq, A. Marium, R. Raza, M.A. Ahmad, M.A. Khan, G. Abbas, M.W. Boota, S.K. Imran, S. Arshad, and M. Ikram, Comparative study of Ce0.80Sm0.20Ba0.80Y0.20O3-d (YB-SDC) electrolyte by various chemical synthesis routes, Results Phys. 8, 780–784 (2018),
https://doi.org/10.1016/j.rinp.2018.01.011
[8] L. Spiridigliozzi, G. Dell'Agli, A. Marocco, G. Accardo, M. Pansini, S.P. Yoon, H.C. Ham, and D. Frattini, Engineered co-precipitation chemistry with ammonium carbonate for scalable synthesis and sintering of improved Sm0.2Ce0.8O1.90 and Gd0.16Pr0.04Ce0.8O1.90 electrolytes for IT-SOFCs, J. Ind. Eng. Chem. 59, 17–27 (2018),
https://doi.org/10.1016/j.jiec.2017.10.001
[9] K. Reddy and K. Karan, Sinterability, mechanical, microstructural, and electrical properties of gadolinium-doped ceria electrolyte for low-temperature solid oxide fuel cells, J. Electroceramics 15, 45–56 (2005),
https://doi.org/10.1007/s10832-005-1099-4
[10] M.A.F. Öksüzömer, G. Dönmez, V. Sariboğa, and T.G. Altinçekiç, Microstructure and ionic conductivity properties of gadolinia doped ceria (GdxCe1-xO2-x/2) electrolytes for intermediate temperature SOFCs prepared by the polyol method, Ceram. Int. 39, 7305–7315 (2013),
https://doi.org/10.1016/j.ceramint.2013.02.069
[11] G. Accardo, L. Spiridigliozzi, R. Cioffi, C. Ferone, E. Di Bartolomeo, S.P. Yoon, and G. Dell'Agli, Gadolinium-doped ceria nanopowders synthesized by urea-based homogeneous co-precipitation (UBHP), Mat. Chem. Phys. 187, 149–155 (2017),
https://doi.org/10.1016/j.matchemphys.2016.11.060
[12] K.C. Anjaneya, G.P. Nayaka, J. Manjanna, G. Govindaraj, and K.N. Ganesha, Preparation and characterization of Ce1-xGdxO2-δ (x = 0.1–0.3) as solid electrolyte for intermediate temperature SOFC, J. Alloys Compd. 578, 53–59 (2013),
https://doi.org/10.1016/j.jallcom.2013.05.010
[13] A.S. Babu, R. Bauri, and G.S. Reddy, Processing and conduction behavior of nanocrystalline Gd-doped and rare earth co-doped ceria electrolytes, Electrochim. Acta 209, 541–550 (2016),
https://doi.org/10.1016/j.electacta.2016.05.118
[14] P.C.C. Daza, R.A.M. Meneses, J.L.A. Ferreira, J.A. Araujo, A.C.M. Rodrigues, and C.R.M. da Silva, Influence of microstructural characteristics on ionic conductivity of ceria based ceramic solid electrolytes, Ceram. Int. 44(2), 2138–2145 (2018),
https://doi.org/10.1016/j.ceramint.2017.10.166
[15] R.O. Fuentes and R.T. Baker, Synthesis and properties of Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes, Int. J. Hydrogen Energy 33, 3480–3484 (2008),
https://doi.org/10.1016/j.ijhydene.2007.10.026
[16] D.W. Joh, M.K. Rath, J.W. Park, J.H. Park, K.H. Cho, S. Lee, K.J. Yoon, J.H. Lee, and K.T. Lee, Sintering behavior and electrochemical performances of nano-sized gadolinium-doped ceria via ammonium carbonate assisted co-precipitation for solid oxide fuel cells, J. Alloys Compd. 682, 188–195 (2016),
https://doi.org/10.1016/j.jallcom.2016.04.270
[17] S. Kulkarni, S. Duttagupta, and G. Phatak, Taguchi design of experiments for optimization of ionic conductivity in nanocrystalline Gadolinium doped Ceria, Ceram. Int. 41(7), 8973–8980 (2015),
https://doi.org/10.1016/j.ceramint.2015.03.171
[18] H.C. Lee, J.A. Lee, J.H. Lee, Y.W. Heo, and J.J. Kim, Ionic conductivity and relaxations of In-doped GDC (gadolinium doped ceria) ceramics, Ceram. Int. 43(15), 11792–11798 (2017),
https://doi.org/10.1016/j.ceramint.2017.06.018
[19] A. Arabaci and M.F. Öksüzömer, Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications, Ceram. Int. 38, 6509–6515 (2012),
https://doi.org/10.1016/j.ceramint.2012.05.030
[20] A. Zarkov, A. Stanulis, T. Salkus, A. Kezionis, V. Jasulaitiene, R. Ramanauskas, S. Tautkus, and A. Kareiva, Synthesis of nanocrystalline gadolinium doped ceria via sol-gel combustion and sol-gel synthesis routes, Ceram. Int. 42(3), 3972–3988 (2016),
https://doi.org/10.1016/j.ceramint.2015.11.066
[21] W.J. Bowman, J. Zhu, R. Sharma, and P.A. Crozier, Electrical conductivity and grain boundary composition of Gd-doped and Gd/Pr co-doped ceria, Solid State Ion. 272, 9–17 (2015),
https://doi.org/10.1016/j.ssi.2014.12.006
[22] A. Tschope, S. Kilassonia, and R. Birringer, The grain boundary effect in heavily doped cerium oxide, Solid State Ion. 173, 57–61 (2004),
https://doi.org/10.1016/j.ssi.2004.07.052
[23] S. Kazlauskas, A. Kežionis, T. Šalkus, and A. Orliukas, Effect of sintering temperature on electrical properties of gadolinium-doped ceria ceramics, J. Mater. Sci. 50, 3246–3251 (2015),
https://doi.org/10.1007/s10853-015-8892-5
[24] A. Kežionis, P. Butvilas, T. Šalkus, S. Kazlauskas, D. Petrulionis, T. Žukauskas, E. Kazakevičius, and A.F. Orliukas, Four-electrode impedance spectrometer for investigation of solid ion conductors, Rev. Sci. Instrum. 84, 013902 (2013),
https://doi.org/10.1063/1.4774391
[25] A. Kežionis, S. Kazlauskas, D. Petrulionis, and A.F. Orliukas, Broadband method for the determination of small sample's electrical and dielectric properties at high temperatures, IEEE Trans. Microw. Theory Tech. 62(10), 2456–2461 (2014),
https://doi.org/10.1109/TMTT.2014.2350963
[26] J.R. Dygas, Dielectric function of ionic conductors studied by impedance spectroscopy, Solid State Ion. 176(25-28), 2065–2078 (2005),
https://doi.org/10.1016/j.ssi.2004.11.023
[27] A. Kežionis, S. Kazlauskas, D. Petrulionis, and A.F. Orliukas, Relationship between charge carrier relaxation and peculiarities of electric response in some solid oxygen ion conductors, Solid State Ion. 279, 25–31 (2015),
https://doi.org/10.1016/j.ssi.2015.07.009
[28] Impedance Spectroscopy, Theory, Experiment and Applications, eds. E. Barsoukov and J.R. Macdonald (John Wiley and Sons, New Jersey, 2005),
https://www.wiley.com/en-gb/search?pq=978-1-119-38186-0
[29] T. van Dijk and A.J. Burggraaf, Grain boundary effects on ionic conductivity in ceramic GdxZr1-xO2-(x/2) solid solutions, Phys. Status Solidi A 63, 229–240 (1981),
https://doi.org/10.1002/pssa.2210630131
[30] J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (John Wiley & Sons, New York, 1987)
[31] S. Kazlauskas, A. Kežionis, T. Šalkus, and A.F. Orliukas, Charge carrier relaxation in solid Vo conductors, Solid State Ion. 262, 593–596 (2014),
https://doi.org/10.1016/j.ssi.2013.10.035
[32] S. Kazlauskas, A. Kežionis, T. Šalkus, and A.F. Orliukas, Electrical properties of YSZ and CaSZ single crystals, Solid State Ion. 231, 37–42 (2013),
https://doi.org/10.1016/j.ssi.2012.10.020