Received 25 February 2019; revised 28 March 2019; accepted 2 April
2019
Dviejų rūšių gadoliniu legiruoto cerio oksido
keramikos buvo pagamintos iš skirtingų miltelių: vieni iš jų
komerciniai, o kiti buvo sintezuojami zolių-gelių metodu,
naudojant tartarinę rūgštį. Sukepintos keramikos turėjo
skirtingą mikrostruktūrą, tačiau tyrimai rentgeno spindulių
difrakcijos metodu rodė kubinio fluorito struktūrą be jokių
priemaišinių fazių. Šių medžiagų elektrinės savybės buvo
tiriamos iki 10 GHz dažniuose naudojant 2-jų ir 4-ių elektrodų
pilnutinės varžos spektroskopijos metodus.
Pirminiai elektrinių savybių tyrimo rezultatai parodė, kad
keramikų kristalitų laidumai ir jų aktyvacijos energijos yra
identiški. Tačiau dėl skirtingų tarpkristalitinių terpių savybių
bendrieji laidumai ir jų aktyvacijos energijos skyrėsi. Keturių
elektrodų pilnutinės varžos spektroskopijos metodu buvo
išmatuoti keramikų tarpkristalitinių terpių elektriniai atsakai.
Pasitelkus šiuos duomenis buvo tiriamos krūvininkų relaksacijos
trukmių pasiskirstymo keramikų tarpkristalitinėse terpėse
temperatūrinės priklausomybės. Nustatyta, kad kylant
temperatūrai šis pasiskirstymas didėja, priešingai, nei anksčiau
stebėtame analogiškame reiškinyje joninio laidumo keramikų
kristalituose ir monokristaluose. Taip pat parodyta, kad manant,
jog atskiros relaksacijų trukmės kinta pagal Arenijaus dėsnį,
tiek aktyvacijos energija, tiek priešeksponentinis faktorius
turi būti pasiskirstę.
References
/
Nuorodos
[1] S. Zha, C. Xia, and G. Meng, Effect of Gd (Sm) doping on
properties of ceria electrolyte for solid oxide fuel cells, J.
Power Sources
115, 44–48 (2003),
https://doi.org/10.1016/S0378-7753(02)00625-0
[2] G. Accardo, D. Frattini, H.C. Ham, J.H. Han, and S.P. Yoon,
Improved microstructure and sintering temperature of bismuth
nano-doped GDC powders synthesized by direct sol-gel combustion,
Ceram. Int.
44, 3800–3809 (2018),
https://doi.org/10.1016/j.ceramint.2017.11.165
[3] G. Dell'Agli, L. Spiridigliozzi, M. Pansini, G. Accardo,
S.P. Yoon, and D. Frattini, Effect of the carbonate environment
on morphology and sintering behaviour of variously co-doped (Ca,
Sr, Er, Pr) Samarium-doped Ceria in
co-precipitation/hydrothermal synthesis, Ceram. Int.
44,
17935–17944 (2018),
https://doi.org/10.1016/j.ceramint.2018.06.269
[4] S.I. Ahmad, T. Mohammed, A. Bahafi, and M.B. Suresh, Effect
of Mg doping and sintering temperature on structural and
morphological properties of samarium-doped ceria for IT-SOFC
electrolyte, Appl. Nanosci.
7, 243–252 (2017),
https://doi.org/10.1007/s13204-017-0567-x
[5] K.R. Lee, J.H. Lee, and H.I. Yoo, Grain size effect on the
electrical properties of nanocrystalline ceria, J. Eur. Ceram.
Soc.
34, 2363–2370 (2014),
https://doi.org/10.1016/j.jeurceramsoc.2014.02.035
[6] T.H. Santos, J.P.F. Grilo, F.J.A. Loureiro, D.P. Fagg, F.C.
Fonseca, and D.A. Macedo, Structure, densification and
electrical properties of Gd
3+ and Cu
2+
co-doped ceria solid electrolytes for SOFC applications: Effects
of Gd
2O
3 content, Ceram. Int.
44,
2745–2751 (2018),
https://doi.org/10.1016/j.ceramint.2017.11.009
[7] S. Tariq, A. Marium, R. Raza, M.A. Ahmad, M.A. Khan, G.
Abbas, M.W. Boota, S.K. Imran, S. Arshad, and M. Ikram,
Comparative study of Ce
0.80Sm
0.20Ba
0.80Y
0.20O
3-d
(YB-SDC) electrolyte by various chemical synthesis routes,
Results Phys.
8, 780–784 (2018),
https://doi.org/10.1016/j.rinp.2018.01.011
[8] L. Spiridigliozzi, G. Dell'Agli, A. Marocco, G. Accardo, M.
Pansini, S.P. Yoon, H.C. Ham, and D. Frattini, Engineered
co-precipitation chemistry with ammonium carbonate for scalable
synthesis and sintering of improved Sm
0.2Ce
0.8O
1.90
and Gd
0.16Pr
0.04Ce
0.8O
1.90
electrolytes for IT-SOFCs, J. Ind. Eng. Chem.
59, 17–27
(2018),
https://doi.org/10.1016/j.jiec.2017.10.001
[9] K. Reddy and K. Karan, Sinterability, mechanical,
microstructural, and electrical properties of gadolinium-doped
ceria electrolyte for low-temperature solid oxide fuel cells, J.
Electroceramics
15, 45–56 (2005),
https://doi.org/10.1007/s10832-005-1099-4
[10] M.A.F. Öksüzömer, G. Dönmez, V. Sariboğa, and T.G.
Altinçekiç, Microstructure and ionic conductivity properties of
gadolinia doped ceria (Gd
xCe
1-xO
2-x/2)
electrolytes for intermediate temperature SOFCs prepared by the
polyol method, Ceram. Int.
39, 7305–7315 (2013),
https://doi.org/10.1016/j.ceramint.2013.02.069
[11] G. Accardo, L. Spiridigliozzi, R. Cioffi, C. Ferone, E. Di
Bartolomeo, S.P. Yoon, and G. Dell'Agli, Gadolinium-doped ceria
nanopowders synthesized by urea-based homogeneous
co-precipitation (UBHP), Mat. Chem. Phys.
187, 149–155
(2017),
https://doi.org/10.1016/j.matchemphys.2016.11.060
[12] K.C. Anjaneya, G.P. Nayaka, J. Manjanna, G. Govindaraj, and
K.N. Ganesha, Preparation and characterization of Ce
1-xGd
xO
2-δ
(
x = 0.1–0.3) as solid electrolyte for intermediate
temperature SOFC, J. Alloys Compd.
578, 53–59 (2013),
https://doi.org/10.1016/j.jallcom.2013.05.010
[13] A.S. Babu, R. Bauri, and G.S. Reddy, Processing and
conduction behavior of nanocrystalline Gd-doped and rare earth
co-doped ceria electrolytes, Electrochim. Acta
209,
541–550 (2016),
https://doi.org/10.1016/j.electacta.2016.05.118
[14] P.C.C. Daza, R.A.M. Meneses, J.L.A. Ferreira, J.A. Araujo,
A.C.M. Rodrigues, and C.R.M. da Silva, Influence of
microstructural characteristics on ionic conductivity of ceria
based ceramic solid electrolytes, Ceram. Int.
44(2),
2138–2145 (2018),
https://doi.org/10.1016/j.ceramint.2017.10.166
[15] R.O. Fuentes and R.T. Baker, Synthesis and properties of
Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes,
Int. J. Hydrogen Energy
33, 3480–3484 (2008),
https://doi.org/10.1016/j.ijhydene.2007.10.026
[16] D.W. Joh, M.K. Rath, J.W. Park, J.H. Park, K.H. Cho, S.
Lee, K.J. Yoon, J.H. Lee, and K.T. Lee, Sintering behavior and
electrochemical performances of nano-sized gadolinium-doped
ceria via ammonium carbonate assisted co-precipitation for solid
oxide fuel cells, J. Alloys Compd.
682, 188–195 (2016),
https://doi.org/10.1016/j.jallcom.2016.04.270
[17] S. Kulkarni, S. Duttagupta, and G. Phatak, Taguchi design
of experiments for optimization of ionic conductivity in
nanocrystalline Gadolinium doped Ceria, Ceram. Int.
41(7),
8973–8980 (2015),
https://doi.org/10.1016/j.ceramint.2015.03.171
[18] H.C. Lee, J.A. Lee, J.H. Lee, Y.W. Heo, and J.J. Kim, Ionic
conductivity and relaxations of In-doped GDC (gadolinium doped
ceria) ceramics, Ceram. Int.
43(15), 11792–11798 (2017),
https://doi.org/10.1016/j.ceramint.2017.06.018
[19] A. Arabaci and M.F. Öksüzömer, Preparation and
characterization of 10 mol% Gd doped CeO
2 (GDC)
electrolyte for SOFC applications, Ceram. Int.
38,
6509–6515 (2012),
https://doi.org/10.1016/j.ceramint.2012.05.030
[20] A. Zarkov, A. Stanulis, T. Salkus, A. Kezionis, V.
Jasulaitiene, R. Ramanauskas, S. Tautkus, and A. Kareiva,
Synthesis of nanocrystalline gadolinium doped ceria via sol-gel
combustion and sol-gel synthesis routes, Ceram. Int.
42(3),
3972–3988 (2016),
https://doi.org/10.1016/j.ceramint.2015.11.066
[21] W.J. Bowman, J. Zhu, R. Sharma, and P.A. Crozier,
Electrical conductivity and grain boundary composition of
Gd-doped and Gd/Pr co-doped ceria, Solid State Ion.
272,
9–17 (2015),
https://doi.org/10.1016/j.ssi.2014.12.006
[22] A. Tschope, S. Kilassonia, and R. Birringer, The grain
boundary effect in heavily doped cerium oxide, Solid State Ion.
173, 57–61 (2004),
https://doi.org/10.1016/j.ssi.2004.07.052
[23] S. Kazlauskas, A. Kežionis, T. Šalkus, and A. Orliukas,
Effect of sintering temperature on electrical properties of
gadolinium-doped ceria ceramics, J. Mater. Sci.
50,
3246–3251 (2015),
https://doi.org/10.1007/s10853-015-8892-5
[24] A. Kežionis, P. Butvilas, T. Šalkus, S. Kazlauskas, D.
Petrulionis, T. Žukauskas, E. Kazakevičius, and A.F. Orliukas,
Four-electrode impedance spectrometer for investigation of solid
ion conductors, Rev. Sci. Instrum.
84, 013902 (2013),
https://doi.org/10.1063/1.4774391
[25] A. Kežionis, S. Kazlauskas, D. Petrulionis, and A.F.
Orliukas, Broadband method for the determination of small
sample's electrical and dielectric properties at high
temperatures, IEEE Trans. Microw. Theory Tech.
62(10),
2456–2461 (2014),
https://doi.org/10.1109/TMTT.2014.2350963
[26] J.R. Dygas, Dielectric function of ionic conductors studied
by impedance spectroscopy, Solid State Ion.
176(25-28),
2065–2078 (2005),
https://doi.org/10.1016/j.ssi.2004.11.023
[27] A. Kežionis, S. Kazlauskas, D. Petrulionis, and A.F.
Orliukas, Relationship between charge carrier relaxation and
peculiarities of electric response in some solid oxygen ion
conductors, Solid State Ion.
279, 25–31 (2015),
https://doi.org/10.1016/j.ssi.2015.07.009
[28]
Impedance Spectroscopy, Theory, Experiment and
Applications, eds. E. Barsoukov and J.R. Macdonald (John
Wiley and Sons, New Jersey, 2005),
https://www.wiley.com/en-gb/search?pq=978-1-119-38186-0
[29] T. van Dijk and A.J. Burggraaf, Grain boundary effects on
ionic conductivity in ceramic Gd
xZr
1-xO
2-(x/2)
solid solutions, Phys. Status Solidi A
63, 229–240
(1981),
https://doi.org/10.1002/pssa.2210630131
[30] J.R. Macdonald,
Impedance Spectroscopy: Emphasizing
Solid Materials and Systems (John Wiley & Sons, New
York, 1987)
[31] S. Kazlauskas, A. Kežionis, T. Šalkus, and A.F. Orliukas,
Charge carrier relaxation in solid Vo conductors, Solid State
Ion.
262, 593–596 (2014),
https://doi.org/10.1016/j.ssi.2013.10.035
[32] S. Kazlauskas, A. Kežionis, T. Šalkus, and A.F. Orliukas,
Electrical properties of YSZ and CaSZ single crystals, Solid
State Ion.
231, 37–42 (2013),
https://doi.org/10.1016/j.ssi.2012.10.020