[PDF]  https://doi.org/10.3952/physics.v59i3.4080

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 139–145 (2019)
 


SYNTHESIS OF GOLD NANOSTRUCTURES USING WET CHEMICAL DEPOSITION IN SiO2/Si TEMPLATE
 
Victoria D. Bundyukovaa, Dzmitry V. Yakimchuka, Artem Kozlovskiyb,c, Dmitriy I. Shlimasb,c, Daria I. Tishkevicha,d, and Egor Yu. Kaniukove
 aScientific-Practical Materials Research Center of National Academy of Sciences of Belarus, 19 P. Brovka Street, 220072 Minsk, Belarus
bLaboratory of Solid State Physics, Institute of Nuclear Physics, 2/1 Abylay Hana Avenue, 010008 Astana, Kazakhstan
cL.N. Gumilyov Eurasian National University, 2/1 Abylay Hana Avenue, 010008 Astana, Kazakhstan
dSouth Ural State University, 76 Lenin Avenue, 454080 Chelyabinsk, Russia
eInstitute of Chemistry of New Materials of National Academy of Sciences of Belarus, 36 Francyska Skaryny Street, 220141 Minsk, Belarus
Email: victoria.bundyukova@gmail.com

Received 6 May 2019; revised 6 June 2019; accepted 30 September 2019

The size and interposition of particles is a key parameter for the practical application of metallic nanostructures which requires the development of a synthesis method with precise control over their parameters. In this work the method for the synthesis of gold nanostructures in the pores of silicon dioxide from a gold sulfite complex and a gold chloride solution via wet chemistry technique was proposed. The influence of deposition parameters, such as deposition temperature and electrolyte composition, on the deposit morphology was studied. It was shown that gold agglomerates were unevenly distributed over the silicon surface at high temperatures and practically uniformly distributed with temperature decrease. Addition of fluoric acid at the deposition stage defines the metal precipitation selectivity into the silicon oxide pores. The peculiarities of gold nanostructures formation mechanism were discussed.
Keywords: porous SiO2/Si template, wet chemistry, growth mechanism, gold nanostructures
PACS: 61.46.+w


AUKSO NANODARINIŲ SINTEZĖ SiO2/Si MATRICOJE NAUDOJANT ŠLAPIĄ CHEMINĮ NUSODINIMĄ

Victoria D. Bundyukovaa, Dzmitry V. Yakimchuka, Artem Kozlovskiyb,c, Dmitriy I. Shlimasb,c, Daria I. Tishkevicha,d, Egor Yu. Kaniukove

aBaltarusijos nacionalinės mokslų akademijos Mokslinis-praktinis medžiagų tyrimo centras, Minskas, Baltarusija
bBranduolinės fizikos instituto Kietojo kūno fizikos laboratorija, Astana, Kazachstanas
cL. N. Gumiliovo vardo Eurazijos nacionalinis universitetas, Astana, Kazachstanas
dPietų Uralo valstybinis universitetas, Čeliabinskas, Rusija
eBaltarusijos nacionalinės mokslų akademijos Naujų medžiagų chemijos institutas, Minskas, Baltarusija
 

References / Nuorodos

[1] A.D. Maynard, R.J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberdörster, M.A. Philbert, J. Ryan, A. Seaton, V. Stone, S.S. Tinkle, L. Tran, N.J. Walker, and D.B. Warheit, Safe handling of nanotechnology, Nature 444, 267–269 (2006),
https://doi.org/10.1038/444267a
[2] E. Lindquist, K.N. Mosher-Howe, and X. Liu, Nanotechnology … What is it good for? (Absolutely everything): A problem definition approach, Rev. Policy Res. 27, 255–271 (2010),
https://doi.org/10.1111/j.1541-1338.2010.00441.x
[3] B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, and R.P. Van Duyne, SERS: Materials, applications, and the future, Mater. Today 15, 16–25 (2012),
https://doi.org/10.1016/S1369-7021(12)70017-2
[4] Y. Xia and N.J. Halas, Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures, MRS Bull. 30, 338–348 (2005),
https://doi.org/10.1557/mrs2005.96
[5] J. Langer, S.M. Novikov, and L.M. Liz-Marzán, Sensing using plasmonic nanostructures and nanoparticles, Nanotechnology 26, 322001 (2015),
https://doi.org/10.1088/0957-4484/26/32/322001
[6] H.J. Yin, Z.Y. Chen, Y.M. Zhao, M.Y. Lv, C.A. Shi, Z.L. Wu, X. Zhang, L. Liu, M.L. Wang, and H.J. Xu, Ag@Au core-shell dendrites: A stable, reusable and sensitive surface enhanced Raman scattering substrate, Sci. Rep. 5, 1–9 (2015),
https://doi.org/10.1038/srep14502
[7] K. Girel, E. Yantcevich, G. Arzumanyan, N. Doroshkevich, and H. Bandarenka, Detection of DNA molecules by SERS spectroscopy with silvered porous silicon as an active substrate, Phys. Status Solidi 213, 2911–2915 (2016),
https://doi.org/10.1002/pssa.201600432
[8] H. Wei and H. Xu, Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy, Nanoscale 5, 10794–10805 (2013),
https://doi.org/10.1039/c3nr02924g
[9] E. Kaniukov, A. Shumskaya, D. Yakimchuk, A. Kozlovskiy, I. Korolkov, M. Ibragimova, M. Zdorovets, K. Kadyrzhanov, V. Rusakov, M. Fadeev, E. Lobko, K. Saunina, and L. Nikolaevich, FeNi nanotubes: perspective tool for targeted delivery, Appl. Nanosci. 9, 835–844 (2019),
https://doi.org/10.1007/s13204-018-0762-4
[10] A.L. Kozlovskiy, D.I. Shlimas, A.E. Shumskaya, E.Y. Kaniukov, M.V. Zdorovets, and K.K. Kadyrzhanov, Influence of electrodeposition parameters on structural and morphological features of Ni nanotubes, Phys. Met. Metallogr. 118, 164–169 (2017),
https://doi.org/10.1134/S0031918X17020065
[11] P. Apel, Swift ion effects in polymers: industrial applications, Nucl. Instrum. Methods Phys. Res. B 208, 11–20 (2003),
https://doi.org/10.1016/S0168-583X(03)00634-7
[12] A.E. Shumskaya, E.Y. Kaniukov, A.L. Kozlovskiy, D.I. Shlimas, M.V. Zdorovets, M.A. Ibragimova, V.S. Rusakov, and K.K. Kadyrzhanov, Template synthesis and magnetic characterization of FeNi nanotubes, Prog. Electromagn. Res. C 75, 23–30 (2017),
https://doi.org/10.2528/PIERC17030606
[13] D. Fink, A.V. Petrov, K. Hoppe, W.R. Fahrner, R.M. Papaleo, A.S. Berdinsky, A. Chandra, A. Chemseddine, A. Zrineh, A. Biswas, F. Faupel, and L.T. Chadderton, Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures, Nucl. Instrum. Methods Phys. Res. B 218, 355–361 (2004),
https://doi.org/10.1016/j.nimb.2003.12.083
[14] E.Y. Kaniukov, D.V. Yakimchuk, V.D. Bundyukova, A.E. Shumskaya, A.A. Amirov, and S.E. Demyanov, Peculiarities of charge transfer in SiO2(Ni)/Si nanosystems, Adv. Condens. Matter Phys. 2018, 1–8 (2018),
https://doi.org/10.1155/2018/4927829
[15] E.Y. Kaniukov, A.L. Kozlovsky, D.I. Shlimas, M.V. Zdorovets, D.V. Yakimchuk, E.E. Shumskaya, and K.K. Kadyrzhanov, Electrochemically deposited copper nanotubes, J. Surf. Invest. X-ray Synchrotron Neutron Tech. 11, 270–275 (2017),
https://doi.org/10.1134/S1027451017010281
[16] E. Kaniukov, D. Yakimchuk, G. Arzumanyan, H. Terryn, K. Baert, A. Kozlovskiy, M. Zdorovets, E. Belonogov, and S. Demyanov, Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template, Philos. Mag. 97, 2268–2283 (2017),
https://doi.org/10.1080/14786435.2017.1330562
[17] V. Sivakov, E.Y. Kaniukov, A.V. Petrov, O.V. Korolik, A.V. Mazanik, A. Bochmann, S. Teichert, I.J. Hidi, A. Schleusener, D. Cialla, M.E. Toimil-Molares, C. Trautmann, J. Popp, and S.E. Demyanov, Silver nanostructures formation in porous Si/SiO2 matrix, J. Cryst. Growth 400, 21–26 (2014),
https://doi.org/10.1016/j.jcrysgro.2014.04.024
[18] D. Yakimchuk, E. Kaniukov, V. Bundyukova, L. Osminkina, S. Teichert, S. Demyanov, and V. Sivakov, Silver nanostructures evolution in porous SiO2/p-Si matrices for wide wavelength surface-enhanced Raman scattering applications, MRS Commun. 8, 95–99 (2018),
https://doi.org/10.1557/mrc.2018.22
[19] K.H. Su, Q.H. Wei, X. Zhang, J.J. Mock, D.R. Smith, and S. Schultz, Interparticle coupling effects on plasmon resonances of nanogold particles, Nano Lett. 3, 1087–1090 (2003),
https://doi.org/10.1021/nl034197f
[20] F.H. Cho, Y.C. Lin, and Y.H. Lai, Electrochemically fabricated gold dendrites with high-index facets for use as surface-enhanced Raman-scattering-active substrates, Appl. Surf. Sci. 402, 147–153 (2017),
https://doi.org/10.1016/j.apsusc.2017.01.055
[21] J. Fang, X. Ma, H. Cai, X. Song, and B. Ding, Nanoparticle-aggregated 3D monocrystalline gold dendritic nanostructures, Nanotechnology 17, 5841–5845 (2006),
https://doi.org/10.1088/0957-4484/17/23/021
[22] A. Mashentseva, D. Borgekov, M. Zdorovets, and A. Russakova, Synthesis, structure, and catalytic activity of Au/poly(ethylene terephthalate) composites, Acta Phys. Pol. A 125, 1263–1267 (2014),
https://doi.org/10.12693/APhysPolA.125.1263
[23] A.A. Mashentseva, D.B. Borgekov, D.T. Niyazova, and M.V. Zdorovets, Evaluation of the catalytic activity of the composite track-etched membranes for p-nitrophenol reduction reaction, Pet. Chem. 55, 810–815 (2015),
https://doi.org/10.1134/S0965544115100151
[24] E.Y. Kaniukov, J. Ustarroz, D.V. Yakimchuk, M. Petrova, H. Terryn, V. Sivakov, and A.V. Petrov, Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology, Nanotechnology 27, 115305 (2016),
https://doi.org/10.1088/0957-4484/27/11/115305
[25] D. Yakimchuk, V. Bundyukova, A. Smirnov, and E. Kaniukov, Express method of estimation of etched ion track parameters in silicon dioxide template, Phys. Status Solidi B Basic Solid State Phys. 256, 1800316 (2018),
https://doi.org/10.1002/pssb.201800316
[26] V. Bundyukova, D. Yakimchuk, E. Shumskaya, A. Smirnov, M. Yarmolich, and E. Kaniukov, Post-processing of SiO2/Si ion-track template images for pores parameters analysis, Mater. Today Proc. 7, 828–834 (2019),
https://doi.org/10.1016/j.matpr.2018.12.081
[27] V. Bundyukova, E. Kaniukov, A. Shumskaya, A. Smirnov, M. Kravchenko, and D. Yakimchuk, Ellipsometry as an express method for determining the pore parameters of ion-track SiO2 templates on a silicon substrate, EPJ Web Conf. 201, 01001 (2019),
https://doi.org/10.1051/epjconf/201920101001