[PDF]  https://doi.org/10.3952/physics.v59i3.4081

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 146–155 (2019)
 


LOW-FREQUENCY NOISE OF NEAR UV LEDs
 
Justinas Glemža, Sandra Pralgauskaitė, Vilius Palenskis, and Jonas Matukas
  Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Emails: justinas.glemza@ff.vu.lt; sandra.pralgauskaite@ff.vu.lt; vilius.palenskis@ff.vu.lt; jonas.matukas@ff.vu.lt

Received 17 May 2019; revised 27 June 2019; accepted 30 September 2019

Low-frequency noise characteristics of high power near ultraviolet light-emitting diodes (LEDs) with peak radiative wavelengths in a range of 380–410 nm are investigated in a temperature interval of 110–293 K. The defect-assisted tunnelling current component has been observed in some 380 nm peak wavelength samples with corresponding Lorentzian-type electrical noise spectra. Other samples (with a peak wavelength of 390–410 nm) have mainly 1/fα-type electrical fluctuations. Cross-correlation coefficient analysis between electrical and optical fluctuations has been performed in order to evaluate whether the observed defect levels, responsible for additional generation–recombination (g–r) noise components in LEDs noise spectra, are related to the active layer or to the peripheral area of the device. Activation energies of these g–r centres have been also evaluated using g–r noise spectroscopy.
Keywords: cross-correlation coefficient, fluctuation, light-emitting diode, noise, tunnelling
PACS: 72.70.+m, 85.60.Jb


ARTIMOSIOS UV SRITIES ŠVIESOS DIODŲ ŽEMADAŽNIAI TRIUKŠMAI

Justinas Glemža, Sandra Pralgauskaitė, Vilius Palenskis, Jonas Matukas

Vilniaus universiteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva
 
Atlikti didelės galios artimosios ultravioletinės (UV) srities šviesos diodų su smailiniu bangos ilgiu 380–410 nm intervale žemadažnio triukšmo charakteristikų tyrimai 110–293 K temperatūroje. Kai kurie 380 nm smailinio bangos ilgio bandiniai turi vyraujančią tunelinės srovės komponentę, atsirandančią dėl defektų, esant pridėtai žemai įtampai, ir pasižymi generacinio-rekombinacinio triukšmo spektriniais tankiais visame tirtame srovių intervale. Likę bandiniai yra charakterizuojami 1/fα-tipo fliuktuacijomis, tačiau, pasiekus nuoseklios varžos ribojamą laidumo sritį, triukšmų spektriniuose tankiuose išryškėja papildoma generacinio-rekombinacinio triukšmo komponentė. Dalis 390 nm smailinio bangos ilgio bandinių srovių 0,5–10 mA intervale taip pat pasižymi generacinio-rekombinacinio tipo fliuktuacijomis. Generacinio-rekombinacinio triukšmo spektroskopija rastos šių krūvininkų pagavimo lygmenų aktyvacijos energijos. Siekiant nustatyti triukšmo šaltinių vietą bandinyje ir įvertinti, ar minėti defektų lygmenys yra susiję su aktyviąja ar pasyviąja šviesos diodo sritimi, buvo atlikta abipusės koreliacijos koeficiento tarp elektrinių ir optinių fliuktuacijų analizė 10 Hz–20 kHz dažnių srityje. Tobulinant šviesos diodų gamybos technologiją, triukšmo šaltinių vietos nustatymas yra ypač svarbus.

References / Nuorodos

[1] Y. Muramoto, M. Kimura, and S. Nouda, Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp, Semicond. Sci. Technol. 29, 1–8 (2014),
https://doi.org/10.1088/0268-1242/29/8/084004
[2] D. Morita, M. Sano, M. Yamamoto, T. Murayama, S. Nagahama, and T. Mukai, High output power 365 nm ultraviolet light emitting diode of GaN-free structure, Jpn. J. Appl. Phys. 41, L1434–L1436 (2002),
https://doi.org/10.1143/JJAP.41.L1434
[3] J.T. Oh, Y.T. Moon, D.S. Kang, C.K. Park, J.W. Han, M.H. Jung, Y.J. Sung, H.H. Jeong, J.O. Song, and T.Y. Seong, High efficiency ultraviolet GaN-based vertical light emitting diodes on 6-inch sapphire substrate using ex-situ sputtered AlN nucleation layer, Opt. Express 26, 5111–5117 (2018),
https://doi.org/10.1364/OE.26.005111
[4] K.C. Shen, W.Y. Lin, H.Y. Lin, K.Y. Chen, and D.S. Wuu, Self-textured oxide structure for improved performance of 365 nm ultraviolet vertical-type light-emitting diodes, Opt. Express 22, 17600–17606 (2014),
https://doi.org/10.1364/OE.22.017600
[5] P. Ruterana, S. Kret, A. Vivet, M. Grzegorz, and P. Dłużewski, Composition fluctuation in InGaN quantum wells made from molecular beam or metalorganic vapor phase epitaxial layers, J. Appl. Phys. 91, 8979–8985 (2002),
https://doi.org/10.1063/1.1473666
[6] X.A. Cao, K. Topol, F. Shahedipour-Sandvik, J. Teetsov, P.M. Sandvik, S.F. LeBoeuf, A. Ebong, J. Kretchmer, E.B. Stokes, S. Arthur, A.E. Kaloyeros, and D. Walker, Influence of defects on electrical and optical characteristics of GaN/InGaN-based light-emitting diodes, Proc. SPIE 4776, 105–113 (2002),
https://doi.org/10.1117/12.452581
[7] L.K.J. Vandamme, Noise as diagnostic tool for quality and reliability of electronic devices, IEEE Trans. Electron Dev. 41, 2176–2187 (1994),
https://doi.org/10.1109/16.333839
[8] S. Bychikhin, D. Pogany, L.K.J. Vandamme, G. Meneghesso, and E. Zanoni, Low-frequency noise sources in as-prepared and aged GaN-based light-emitting diodes, J. Appl. Phys. 97, 123714 (2005),
https://doi.org/10.1063/1.1942628
[9] S.L. Rumyantsev, C. Wetzel, and M.S. Shur, Wavelength-resolved low-frequency noise of GaInN/GaN green light emitting diodes, J. Appl. Phys. 100, 084506 (2006),
https://doi.org/10.1063/1.2358409
[10] A.E. Chernyakov, M.E. Levinshtein, N.A. Talnishnikh, E.I. Shabunina, and N.M. Shmidt, Low-frequency noise in diagnostics of power blue InGaN/GaN LEDs, J. Cryst. Growth 401, 302–304 (2014),
https://doi.org/10.1016/j.jcrysgro.2013.11.097
[11] J. Glemža, J. Matukas, S. Pralgauskaitė, and V. Palenskis, Low-frequency noise characteristics of high-power white LED during long-term aging experiment, Lith. J. Phys. 58, 194–203 (2018),
https://doi.org/10.3952/physics.v58i2.3749
[12] V. Palenskis, J. Matukas, S. Pralgauskaitė, and B. Šaulys, A detail analysis of electrical and optical fluctuations of green light-emitting diodes by correlation method, Fluctuation Noise Lett. 9, 179–192 (2010),
https://doi.org/10.1142/S0219477510000149
[13] I.H. Lee, A.Y. Polyakov, S.M. Hwang, N.M. Shmidt, E.I. Shabunina, N.A. Tal'nishnih, N.B. Smirnov, I.V. Shchemerov, R.A. Zinovyev, S.A. Tarelkin, and S.J. Pearton, Degradation-induced low frequency noise and deep traps in GaN/InGaN near-UV LEDs, Appl. Phys. Lett. 111, 062103 (2017),
https://doi.org/10.1063/1.4985190
[14] J. Kim, Y. Tak, J. Kim, S. Chae, J.Y. Kim, and Y. Park, Analysis of forward tunneling current in InGaN/GaN multiple quantum well light-emitting diodes grown on Si (111) substrate, J. Appl. Phys. 114, 013101-1–4 (2013),
https://doi.org/10.1063/1.4812231
[15] P. Perlin, M. Osinski, P.G. Eliseev, V.A. Smagley, J. Mu, M. Banas, and P. Sartorid, Low-temperature study of current and electroluminescence in InGaN/AlGaN/GaN double-heterostructure blue light-emitting diodes, Appl. Phys. Lett. 69, 1680–1682 (1996),
https://doi.org/10.1063/1.117026
[16] X.A. Cao, E.B. Stokes, P.M. Sandvik, S.F. LeBoeuf, J. Kretchmer, and D. Walker, Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes, IEEE Electron Device Lett. 23, 535–537 (2002),
https://doi.org/10.1109/LED.2002.802601
[17] M. Lee, H. Lee, K.M. Song, and J. Kim, Investigation of forward tunneling characteristics of InGaN/GaN blue light-emitting diodes on freestanding GaN detached from a Si substrate, Nanomaterials 8, 543-1–7 (2018),
https://doi.org/10.3390/nano8070543
[18] V.K. Malyutenko and S.S. Bolgov, Effect of current crowding on the ideality factor in MQW InGaN/GaN LEDs on sapphire substrates, Proc. SPIE 7617, 76171K (2010),
https://doi.org/10.1117/12.840894
[19] M.J. Kirton and M.J. Uren, Noise in solid-state microstructures: A new perspective in individual defects, interface states and low-frequency (1/f) noise, Adv. Phys. 38, 367–468 (1989),
https://doi.org/10.1080/00018738900101122
[20] V. Palenskis and K. Maknys, Nature of low-frequency noise in homogenous semiconductors, Sci. Rep. 5, 18305-1–7 (2015),
https://doi.org/10.1038/srep18305
[21] V. Palenskis, The charge carrier capture–emission process – the main source of the low-frequency noise in homogeneous semiconductors, Lith. J. Phys. 56, 200–206 (2016),
https://doi.org/10.3952/physics.v56i4.3416
[22] F.N. Hooge, T.G.M. Kleinpenning, and L.K.J. Vandamme, Experimental studies on 1/f noise, Rep. Prog. Phys. 44, 479-532 (1981),
https://doi.org/10.1088/0034-4885/44/5/001
[23] V. Palenskis, J. Matukas, and S. Pralgauskaitė, Light-emitting diode quality investigation via low-frequency noise characteristics, Solid State Electron. 54, 781–786 (2010),
https://doi.org/10.1016/j.sse.2010.04.003