Justinas Glemža, Sandra Pralgauskaitė, Vilius
Palenskis, and Jonas Matukas
Emails: justinas.glemza@ff.vu.lt;
sandra.pralgauskaite@ff.vu.lt; vilius.palenskis@ff.vu.lt;
jonas.matukas@ff.vu.lt
Received 17 May 2019; revised 27 June 2019; accepted 30 September
2019
Atlikti didelės galios artimosios
ultravioletinės (UV) srities šviesos diodų su smailiniu bangos
ilgiu 380–410 nm intervale žemadažnio triukšmo charakteristikų
tyrimai 110–293 K temperatūroje. Kai kurie 380 nm smailinio
bangos ilgio bandiniai turi vyraujančią tunelinės srovės
komponentę, atsirandančią dėl defektų, esant pridėtai žemai
įtampai, ir pasižymi generacinio-rekombinacinio triukšmo
spektriniais tankiais visame tirtame srovių intervale. Likę
bandiniai yra charakterizuojami 1/fα-tipo
fliuktuacijomis, tačiau, pasiekus nuoseklios varžos ribojamą
laidumo sritį, triukšmų spektriniuose tankiuose išryškėja
papildoma generacinio-rekombinacinio triukšmo komponentė. Dalis
390 nm smailinio bangos ilgio bandinių srovių 0,5–10 mA
intervale taip pat pasižymi generacinio-rekombinacinio tipo
fliuktuacijomis. Generacinio-rekombinacinio triukšmo
spektroskopija rastos šių krūvininkų pagavimo lygmenų
aktyvacijos energijos. Siekiant nustatyti triukšmo šaltinių
vietą bandinyje ir įvertinti, ar minėti defektų lygmenys yra
susiję su aktyviąja ar pasyviąja šviesos diodo sritimi, buvo
atlikta abipusės koreliacijos koeficiento tarp elektrinių ir
optinių fliuktuacijų analizė 10 Hz–20 kHz dažnių srityje.
Tobulinant šviesos diodų gamybos technologiją, triukšmo šaltinių
vietos nustatymas yra ypač svarbus.
References
/
Nuorodos
[1] Y. Muramoto, M. Kimura, and S. Nouda, Development and future
of ultraviolet light-emitting diodes: UV-LED will replace the UV
lamp, Semicond. Sci. Technol.
29, 1–8 (2014),
https://doi.org/10.1088/0268-1242/29/8/084004
[2] D. Morita, M. Sano, M. Yamamoto, T. Murayama, S. Nagahama,
and T. Mukai, High output power 365 nm ultraviolet light
emitting diode of GaN-free structure, Jpn. J. Appl. Phys.
41,
L1434–L1436 (2002),
https://doi.org/10.1143/JJAP.41.L1434
[3] J.T. Oh, Y.T. Moon, D.S. Kang, C.K. Park, J.W. Han, M.H.
Jung, Y.J. Sung, H.H. Jeong, J.O. Song, and T.Y. Seong, High
efficiency ultraviolet GaN-based vertical light emitting diodes
on 6-inch sapphire substrate using ex-situ sputtered AlN
nucleation layer, Opt. Express
26, 5111–5117 (2018),
https://doi.org/10.1364/OE.26.005111
[4] K.C. Shen, W.Y. Lin, H.Y. Lin, K.Y. Chen, and D.S. Wuu,
Self-textured oxide structure for improved performance of 365 nm
ultraviolet vertical-type light-emitting diodes, Opt. Express
22,
17600–17606 (2014),
https://doi.org/10.1364/OE.22.017600
[5] P. Ruterana, S. Kret, A. Vivet, M. Grzegorz, and P.
Dłużewski, Composition fluctuation in InGaN quantum wells made
from molecular beam or metalorganic vapor phase epitaxial
layers, J. Appl. Phys.
91, 8979–8985 (2002),
https://doi.org/10.1063/1.1473666
[6] X.A. Cao, K. Topol, F. Shahedipour-Sandvik, J. Teetsov, P.M.
Sandvik, S.F. LeBoeuf, A. Ebong, J. Kretchmer, E.B. Stokes, S.
Arthur, A.E. Kaloyeros, and D. Walker, Influence of defects on
electrical and optical characteristics of GaN/InGaN-based
light-emitting diodes, Proc. SPIE
4776, 105–113 (2002),
https://doi.org/10.1117/12.452581
[7] L.K.J. Vandamme, Noise as diagnostic tool for quality and
reliability of electronic devices, IEEE Trans. Electron Dev.
41,
2176–2187 (1994),
https://doi.org/10.1109/16.333839
[8] S. Bychikhin, D. Pogany, L.K.J. Vandamme, G. Meneghesso, and
E. Zanoni, Low-frequency noise sources in as-prepared and aged
GaN-based light-emitting diodes, J. Appl. Phys.
97,
123714 (2005),
https://doi.org/10.1063/1.1942628
[9] S.L. Rumyantsev, C. Wetzel, and M.S. Shur,
Wavelength-resolved low-frequency noise of GaInN/GaN green light
emitting diodes, J. Appl. Phys.
100, 084506 (2006),
https://doi.org/10.1063/1.2358409
[10] A.E. Chernyakov, M.E. Levinshtein, N.A. Talnishnikh, E.I.
Shabunina, and N.M. Shmidt, Low-frequency noise in diagnostics
of power blue InGaN/GaN LEDs, J. Cryst. Growth
401,
302–304 (2014),
https://doi.org/10.1016/j.jcrysgro.2013.11.097
[11] J. Glemža, J. Matukas, S. Pralgauskaitė, and V. Palenskis,
Low-frequency noise characteristics of high-power white LED
during long-term aging experiment, Lith. J. Phys.
58,
194–203 (2018),
https://doi.org/10.3952/physics.v58i2.3749
[12] V. Palenskis, J. Matukas, S. Pralgauskaitė, and B. Šaulys,
A detail analysis of electrical and optical fluctuations of
green light-emitting diodes by correlation method, Fluctuation
Noise Lett.
9, 179–192 (2010),
https://doi.org/10.1142/S0219477510000149
[13] I.H. Lee, A.Y. Polyakov, S.M. Hwang, N.M. Shmidt, E.I.
Shabunina, N.A. Tal'nishnih, N.B. Smirnov, I.V. Shchemerov, R.A.
Zinovyev, S.A. Tarelkin, and S.J. Pearton, Degradation-induced
low frequency noise and deep traps in GaN/InGaN near-UV LEDs,
Appl. Phys. Lett.
111, 062103 (2017),
https://doi.org/10.1063/1.4985190
[14] J. Kim, Y. Tak, J. Kim, S. Chae, J.Y. Kim, and Y. Park,
Analysis of forward tunneling current in InGaN/GaN multiple
quantum well light-emitting diodes grown on Si (111) substrate,
J. Appl. Phys.
114, 013101-1–4 (2013),
https://doi.org/10.1063/1.4812231
[15] P. Perlin, M. Osinski, P.G. Eliseev, V.A. Smagley, J. Mu,
M. Banas, and P. Sartorid, Low-temperature study of current and
electroluminescence in InGaN/AlGaN/GaN double-heterostructure
blue light-emitting diodes, Appl. Phys. Lett.
69,
1680–1682 (1996),
https://doi.org/10.1063/1.117026
[16] X.A. Cao, E.B. Stokes, P.M. Sandvik, S.F. LeBoeuf, J.
Kretchmer, and D. Walker, Diffusion and tunneling currents in
GaN/InGaN multiple quantum well light-emitting diodes, IEEE
Electron Device Lett.
23, 535–537 (2002),
https://doi.org/10.1109/LED.2002.802601
[17] M. Lee, H. Lee, K.M. Song, and J. Kim, Investigation of
forward tunneling characteristics of InGaN/GaN blue
light-emitting diodes on freestanding GaN detached from a Si
substrate, Nanomaterials
8, 543-1–7 (2018),
https://doi.org/10.3390/nano8070543
[18] V.K. Malyutenko and S.S. Bolgov, Effect of current crowding
on the ideality factor in MQW InGaN/GaN LEDs on sapphire
substrates, Proc. SPIE
7617, 76171K (2010),
https://doi.org/10.1117/12.840894
[19] M.J. Kirton and M.J. Uren, Noise in solid-state
microstructures: A new perspective in individual defects,
interface states and low-frequency (1/
f) noise, Adv.
Phys.
38, 367–468 (1989),
https://doi.org/10.1080/00018738900101122
[20] V. Palenskis and K. Maknys, Nature of low-frequency noise
in homogenous semiconductors, Sci. Rep.
5, 18305-1–7
(2015),
https://doi.org/10.1038/srep18305
[21] V. Palenskis, The charge carrier capture–emission process –
the main source of the low-frequency noise in homogeneous
semiconductors, Lith. J. Phys.
56, 200–206 (2016),
https://doi.org/10.3952/physics.v56i4.3416
[22] F.N. Hooge, T.G.M. Kleinpenning, and L.K.J. Vandamme,
Experimental studies on 1/
f noise, Rep. Prog. Phys.
44,
479-532 (1981),
https://doi.org/10.1088/0034-4885/44/5/001
[23] V. Palenskis, J. Matukas, and S. Pralgauskaitė,
Light-emitting diode quality investigation via low-frequency
noise characteristics, Solid State Electron.
54, 781–786
(2010),
https://doi.org/10.1016/j.sse.2010.04.003